

Magnitude

6

5

de

0

Bollettino Sismico Italiano 2011

Ouaderni di Geofisica

Istituto Nazionale di Geofisica e Vulcanologia

Quaderni di Geofisica

Direttore Responsabile Stefano GRESTA

Editorial Board

Luigi CUCCI - Editor in Chief (INGV - RM1) Raffaele AZZARO (INGV-CT) Mario CASTELLANO (INGV-NA) Viviana CASTELLI (INGV-BO) Rosa Anna CORSARO (INGV-CT) Mauro DI VITO (INGV-NA) Marcello LIOTTA (INGV-PA) Mario MATTIA (INGV-CT) Milena MORETTI (INGV-CNT) Nicola PAGLIUCA (INGV-RM1) Umberto SCIACCA (INGV-RM2) Alessandro SETTIMI (INGV-RM2) Salvatore STRAMONDO (INGV-CNT) Andrea TERTULLIANI (INGV-RM1) Aldo WINKLER (INGV-RM2)

Segreteria di Redazione

Francesca Di Stefano - Referente Rossella Celi Tel. +39 06 51860068 redazionecen@ingv.it

in collaborazione con: Barbara Angioni (RM1)

REGISTRAZIONE AL TRIBUNALE DI ROMA N.174 | 2014, 23 LUGLIO © 2014 INGV Istituto Nazionale di Geofisica e Vulcanologia Sede legale: Via di Vigna Murata, 605 | Roma

Bollettino Sismico Italiano 2011

Italian Seismic Bulletin 2011

Michele Berardi, Luca Arcoraci, Patrizia Battelli, Corrado Castellano, Alessandro Marchetti, Franco Mele, Anna Nardi e Antonio Rossi

INGV (Istituto Nazionale di Geofisica e Vulcanologia, Centro Nazionale Terremoti)

Bollettino Sismico Italiano 2011

uesto lavoro illustra lo stato della Rete Sismica Nazionale Italiana (RSNI) e le principali caratteristiche della sismicità in Italia nell'anno 2011. In tale anno, tramite i dati raccolti dalla RSNI, sono stati localizzati 16499 eventi registrati da 359 stazioni appartenenti sia all'INGV, sia ad altre reti locali e regionali connesse in tempo reale al Centro Nazionale Terremoti (CNT) di Roma. La magnitudo minima di completezza del Bollettino Sismico Italiano (BSI) è M_L 1.5. La magnitudo massima è stata registrata per un evento localizzato nella pianura padano veneta (M_L 4.8). Nella sismicità italiana del 2011 sono state individuate 46 sequenze sismiche rilevanti; tra esse riveste particolare interesse la sequenza nel Montefeltro: iniziata a fine maggio e durata diversi mesi, essa comprende due eventi di magnitudo M_L 4.0. La sequenza del Pollino, iniziata nel 2009 e proseguita a più riprese fino al 25 ottobre 2012 con un evento di magnitudo M_W 5.2, presenta a inizio 2011 un aumento della sismicità che è culminato con l'evento maggiore di quell'anno (M_L 3.6). L'analisi del BSI ha inoltre permesso di individuare una nuova area caratterizzata da eventi di origine antropica (esplosioni in cava) che si aggiunge alle 16 già rilevate negli anni precedenti. In questo lavoro vengono analizzati anche i segnali prodotti da frane di crollo, molto diffuse nel nostro paese lungo gli archi montani alpini e appenninici.

his work illustrates the state of the Italian National Seismic Network (RSNI) and the main characteristics of the seismicity in Italy during 2011. In that year the RSNI located 16,499 events recorded by 359 stations belonging to INGV, and to other local and regional networks connected in real time to the National Earthquake Center in Rome. The apparent minimum magnitude of completeness of the Bollettino Sismico Italiano (BSI) is M_L 1.5. The event of maximum magnitude (M_L 4.8) was located in Veneto, in the Po Valley. We have identified 46 relevant seismic sequences during 2011. The Montefeltro sequence began in late May and lasted several months, with two events of magnitude M_L 4.0. The Pollino sequence is remarkable for its duration: it started in 2009, and repeatedly struck the area, reaching magnitude 5.2 M_W on October 25th, 2012; this sequence shows at the beginning of 2011 an increase of seismicity that culminates with the major event of that year (3.6 M_L). Analyzing the BSI 2011 we also identified a new area subject to anthropogenic events (quarry blasts), in addition to the 16 areas already identified in previous works. We also consider signals produced by landslides from collapses, widespread in our country along the Alpine and Apennine arcs.

1. La Rete Sismica Nazionale nel 2011

Nel 2011 hanno contribuito al Bollettino Sismico Italiano (BSI) 359 stazioni sismiche permanenti; esse includono tutte le stazioni della Rete Sismica Nazionale Italiana (RSNI) e numerose stazioni di altri enti italiani ed esteri con cui l'INGV ha instaurato collaborazioni per lo scambio di segna-li. Durante l'anno sono state inoltre installate un certo numero di stazioni temporanee in occasione di alcune sequenze sismiche. La tabella 1 riporta la composizione strumentale della RSNI nel 2011. La figura 1 mostra lo stato della RSNI nel 2011, anno in cui sono stati attivati 38 nuovi canali di acquisizione dati in seguito a nuove installazioni o attraverso il collegamento al CNT di stazioni preesistenti di altre reti sismiche locali. Quindici dei nuovi canali sono solo accelerometrici. In Valle d'Aosta è stata attivata una stazione in

provincia di Aosta (REMY); in Piemonte sono stati individuati tre nuovi siti: due in provincia di Cuneo (ENR e GBOS) e uno in provincia di Asti (ROTM). Nel Veneto sono stati attivati cinque canali: tre in provincia di Treviso (ASOL, CRND, FRE8), uno in provincia di Verona (TREG) e uno in provincia di Vicenza (ZOVE). In Lombardia sono stati selezionati due nuovi siti di stazione: BORM in provincia di Sondrio e VOBA in provincia di Brescia. In Toscana sono state installate tre nuove stazioni: CELB in provincia di Livorno, OSSC in provincia di Firenze e PTF in provincia di Prato. In Umbria è stata resa operativa una nuova stazione in provincia di Perugia (FOSV). Quindici nuovi canali di acquisizione sono stati attivati nelle Marche per le stazioni di: CRM1, CSP1, EL6, FIU1, GAG1, MTL1, PIO1, SEF1, SSM1, TRE1 (tutte in provincia di Macerata), MOMA, NARO e PE3 in provincia di Pesaro-Urbino, AQT1 in provincia di Ascoli Piceno e COR1

in provincia di Ancona. Un nuovo sito di stazione è stato selezionato in Campania, in provincia di Caserta (PIGN), mentre in Sardegna è stata riattivata la storica stazione di Cagliari (CGL). In Calabria sono stati attivati due nuovi canali di acquisizione per le stazioni di CELI e CET2, entrambi in provincia di Cosenza. Infine in Sicilia, in provincia di Messina, è stata riattivata la storica stazione di ATN e sono state installate 3 nuove stazioni: ISTR, MSFR e MUCR.

Figura 1 Mappa delle stazioni della Rete Sismica Nazionale Italiana operanti nel corso del 2011. Le stazioni che hanno operato per tutto il 2011 sono indicate da triangoli verdi se dotate di velocimetro e accelerometro, in arancione se con il solo velocimetro, in blu se equipaggiate con il solo accelerometro. I triangoli gialli indicano le stazioni installate e quelli rossi le stazioni dismesse nel 2011. **Figure 1** Map of the Italian National Seismic Network operating during 2011. Green triangles show the stations that operated during the whole 2011, equipped with both velocimeter and accelerometer, orange triangles show stations with velocimeter only, blue triangles with accelerometer only. Yellow triangles show stations installed, and red triangles show stations dismissed during 2011.

Nel corso del 2011 hanno smesso di fornire dati al servizio di sorveglianza sismica nazionale le stazioni di Barisano (BRSN), Cassano Irpino (CSSN), Gerfalco (GRFL), Gusciola (GSCL), Pisa Certosa (PII), Repubblica di San Marino (RSM), San Donato Val Comino (SDI), Roio Piano (T0106) e Terranova da Sibari (TDS).

Numero totale di stazioni	359	comprese 9 dismesse nel 2011
Nuove installazioni 2011	38	
Totale velocimetri	335	
Velocimetri verticali	20	
Velocimetri a 3 componenti	315	
Stazioni accelerometriche	133	di cui 24 solo accelerometriche
Stazioni RSNI e RING	126	
Sensori in pozzo	4	
Stazioni fondo marino	1	
Totale stazioni fuori dei confini	20	1 NOA; 11 ETH; 4 MN; 4 AO
Stazioni Geofon (in Italia)	1	
Trillium-240s	9	
Trillium-120s	28	
Trillium-40s	171	
S-13	15	solo verticale
SS1-Ranger	5	solo verticale
Le3D-5s	32	
Le3D-20s	4	
Le3D-1s	14	
L4-C-3D	5	
CMG-3'T-100s	2	
CMG-1T-360s	1	
CMG40-30s	3	
CMG40-60s	5	
KS-2000	1	
STS1-VBB	1	
STS2-120s	38	
Malin	1	
Episensor	16	
SF3000	8	

 Tabella 1
 Composizione strumentale della Rete Sismica Nazionale Italiana nel corso del 2011. Informazioni sulla rete GPS dell'INGV sono reperibili in RING [http://ring.gm.ingv.it].

 Table 1 Instruments of the Italian National Seismic Network installed during 2011. Information on the GPS stations are available at RING [http://ring.gm.ingv.it].

2. La sismicità italiana nel 2011

La sismicità del 2011 ha fatto registrare, rispetto a quella dell'anno precedente, un numero maggiore di terremoti ma magnitudo massime più basse; nessun evento del 2011 ha raggiunto la magnitudo M_L 5.0. Il BSI del 2011 contiene 16499 terremoti localizzati in Italia e zone di confine (Fig. 2). Il 9% (11% nel 2010) di questi (circa 1500 eventi) ha una profondità ipocentrale fissata. Considerando solo gli eventi di magnitudo maggiore o uguale a 3.0 questa percentuale è del

Figura 2 Mappa della sismicità italiana estratta dal Bollettino Sismico Italiano del 2011. I parametri ipocentrali e la mappa sono disponibili in http://ISIDe.rm.ingv.it/ [Mele et al., 2010a].

Figure 2 Map of the Italian seismicity recorded in 2011, extracted from the Italian Seismic Bulletin. Hypocentral parameters and the map are available at http://ISIDe.rm.ingv.it/ [Mele et al., 2010a].

24 % (30% nel 2010), da attribuire per la massima parte ad eventi in mare. L'evento sismico più forte avvenuto in terraferma nel 2011 si è verificato il 17 luglio alle ore 18:30 GMT nella pianura padana (Tab. 4, n° 2), di magnitudo M_L 4.8 (M_w 4.5). In corrispondenza dell'area di subduzione che si estende al di sotto del Mar Tirreno meridionale [Chiarabba et al., 2008] sono stati localizzati i terremoti più profondi avvenuti nel corso del 2011. In particolare 3 eventi di magnitudo compresa tra 3.5 e 4.0 hanno avuto una profondità ipocentrale intorno ai 350 km e sono stati localizzati a qualche decina di chilometri dalle coste della Campania, della Basilicata e della Calabria (Fig. 2).

Durante l'anno sono avvenute un certo numero di sequenze e sciami sismici che hanno interessato tutta la catena appenninica e il settore dell'arco calabro in corrispondenza dello *slab* tirrenico. È di una certa rilevanza la sequenza sismica del Montefeltro, iniziata a fine maggio e durata diversi mesi con magnitudo massime pari a M_L 4.0 per i due eventi più significativi. Inoltre, anche la sequenza del Pollino, che ha raggiunto il suo culmine nel 2012 con un terremoto di magnitudo M_L 5.0 (M_W 5.2), ha presentato a inizio ottobre 2011 un aumento del tasso di sismicità fino a raggiungere, il mese successivo, la magnitudo massima del-

l'anno pari a M_L 3.6.

Nel BSI del 2011 sono presenti 124766 fasi P appartenenti ad eventi sismici localizzati e 94961 fasi S (76% delle P). Le fasi sismiche appartenenti ad eventi associati ma non localizzati sono 25359 così distribuite: 695 Pg e Sg (\sim 2%), 6223 Pn e Sn (\sim 24%) e 18441 fasi telesismiche (P, PKP) (\sim 72%).

Nella figura 3 viene confrontato il numero mensile di terremoti localizzati nella sala di monitoraggio sismico della sede dell'INGV di Roma e quello presente nel BSI. Quest'ultimo contiene circa il 22% in più rispetto al numero di eventi localizzati durante l'attività di sorveglianza sismica. Nel mese di giugno si nota la differenza maggiore (+32%) dovuta principalmente ad una sequenza sismica avvenuta nella zona del Montefeltro (provincia di Forlì-Cesena) e ad uno sciame sismico localizzato nel settore nord–orientale della Sicilia (Monti Nebrodi, provincia di Messina).

Per gli eventi del BSI 2011 è stata stimata nel 97% dei casi la magnitudo locale M_L con legge di attenuazione di Hutton e Boore [1987] mentre per il restante 3% è stato calcolato un valore di magnitudo durata (Md), utilizzando la relazione di Console et al. [1988]. Il BSI 2011 contiene 5088 eventi di magnitudo minore o uguale a 1.0, circa un terzo del numero totale di terremoti localizzati nell'anno.

Figura 3 Distribuzione mensile del numero di terremoti localizzati nel 2011 contenuti nel BSI (in rosso) e prodotti dalla sala di monitoraggio sismico del CNT di Roma (in blu). Il Bollettino contiene mediamente il 20% di eventi in più rispetto al numero di eventi localizzati in Sala di Monitoraggio.

Figure 3 Monthly distribution of earthquakes located and reported in the BSI (in red) compared to the number of seismic events recorded at the earthquake monitoring centre of the Centro Nazionale Terremoti (CNT) in Rome (in blue) during year 2011. The percentage refers to the difference between the two numbers, with respect to the BSI number.

Figura 4 Numero cumulato di terremoti presenti nel BSI 2011. La stella indica l'evento di magnitudo M_L 4.8. **Figure 4** Cumulative number of earthquakes in BSI 2011. Star shows the earthquake with M_L 4.8.

Maximum Likelihood Solution b-value = 0.932 +/- 0.01, a value = 5.16, a value (annual) = 5.16 Magnitude of Completeness = 1.5

Figura 5 Gutenberg-Richter cumulata (quadrati) e non-cumulata (triangoli) calcolata sull'intero BSI 2011. I valori di a, b e M_c (Magnitudo Minima di Completezza) sono stati calcolati utilizzando il software ZMAP [Wiemer, 2001]. La magnitudo minima di completezza apparente è 1.5 (1.6 nel 2009 e 2010).

Figure 5 Cumulative (squares) and non-cumulative (triangles) Gutenberg-Richter distribution of the whole BSI 2011. The values of a, b and M_c (Minimum Magnitude of Completeness) have been calculated using the software ZMAP [Wiemer, 2001]. The apparent minimum magnitude of completeness is 1.5 (it was 1.6 in 2009 and 2010).

Nella figura 4 viene mostrato il numero cumulato di terremoti presenti nel BSI nel corso del 2011. L'aumento di sismicità del mese di giugno è dovuto alle sequenze sismiche sopra citate. La stella gialla indica un evento sismico di magnitudo locale pari a 4.8 avvenuto il 17 luglio nella pianura padana. La distribuzione cumulata e non-cumulata, in funzione della magnitudo, dei terremoti avvenuti nel 2011 è mostrata in figura 5. La magnitudo minima di completezza Mc per l'intero anno è 1.5, con b = 0.93 ± 0.01 e a = 5.16; essa è stata calcolata con il metodo della massima verosimiglianza utilizzando il software ZMAP [Wiemer, 2001]. Prima di calcolare la Mc sono stati esclusi preventivamente dal BSI i terremoti con profondità ipocentrale \geq 38 km, corrispondente al valore medio della profondità della Moho nel modello a strati piani e paralleli utilizzato per la localizzazione dei terremoti del BSI (vedi Tab. 2). Inoltre sono stati esclusi anche la sismicità di confine e circa 500 eventi di probabile natura antropica legata ad esplosioni in cave estrattive. Si ricorda che per gli anni 2009 e 2010 il valore di Mc è stato pari a 1.6.

La figura 6 mostra l'andamento della Mc nel corso del 2011; si può osservare una oscillazione sensibile del valore che nella parte iniziale dell'anno si avvicina a 2 per poi scendere intorno al valore di 1 nel mese di aprile. Per il resto dell'anno, a meno di alcuni brevi periodi, il valore di Mc non si discosta molto dal valore medio di 1.5.

Spessore (km)	Velocità P (km/s)	Velocità S (km/s)
11.1	5.00	2.89
26.9	6.50	3.75
semispazio	8.05	4.65

Tabella 2 Modello di velocità utilizzato per le localizzazioni del BSI 2011, costituito da due strati crostali a velocità costante e un semispazio. Il rapporto Vp/Vs è ovunque 1.732. **Table 2** Velocity model used in the locations of the BSI 2011: two homogeneous crustal layers over a homogeneous halfspace. The Vp/Vs ratio is everywhere 1.732.

3. Sequenze sismiche del 2011

Le sequenze sismiche principali presenti nel BSI 2011 sono state individuate utilizzando l'algoritmo di *declustering* di Reasenberg [1985] a cui sono stati aggiunti una serie di criteri di selezione, definiti dagli analisti del BSI e illustrati nel sottoparagrafo successivo. L'algoritmo analizza spazialmente e temporalmente tutti gli eventi sismici, individuando eventuali *cluster* che vengono rappresentati da un evento equivalente. Seguendo Reasenberg [1985] si definisce per ogni terremoto di magnitudo M una finestra rettangolare spaziotempo di influenza (0 < t < T, 0 < r < R) dove T e R sono

Figura 6 Andamento temporale della magnitudo di completezza M_c e relativo errore calcolati utilizzando il software ZMAP [Wiemer, 2001].

le distanze massime di influenza temporale e spaziale, entrambe funzione della magnitudo M del terremoto. Ogni evento che ricada nella finestra di influenza della scossa precedente è un aftershock di quel terremoto e i due eventi vengono associati in un *cluster*. Se, dato un *cluster* e un evento isolato, quest'ultimo si associa a un evento qualunque del *cluster*, allora anche l'evento isolato entra a far parte del *cluster* preesistente. Per ragioni computazionali l'algoritmo di Reasenberg [1985] prevede che si definiscano un minimo e un massimo alla distanza temporale di influenza t. Nella nostra analisi poniamo questi limiti a 2 e 10 giorni.

Spazialmente, due eventi di magnitudo M1 e M2 sono associati nello stesso *cluster* se la distanza tra i due ipocentri è inferiore alla somma dei raggi r1 e r2 delle faglie circolari equivalenti ai due terremoti secondo il modello di Kanamori e Anderson [1975]. La distanza minima di associazione viene corretta tenendo conto degli errori orizzontali e verticali di localizzazione che, in questa analisi delle sequenze, sono stati posti arbitrariamente a 5 chilometri per tutta la sismicità italiana 2011.

Le coordinate ipocentrali dell'evento equivalente corrispondono al centroide del *cluster*, mentre la magnitudo equivalente si ottiene dal calcolo del momento sismico totale rilasciato dal *cluster*.

Le principali sequenze sismiche individuate nel 2011 sono mostrate nella figura 7.

Figura 7 Mappa delle sequenze sismiche del BSI 2011 individuate applicando l'algoritmo di declustering di Reasenberg. Il colore indica la profondità degli eventi; la dimensione dei simboli è proporzionale alla magnitudo. **Figure 7** Map of seismic sequences identified in BSI 2011, by applying the declustering algorithm of Reasenberg. The colours show the depth of the earthquakes; the size of the symbols is proportional to the magnitude.

3.1 Criteri di selezione

Prima di applicare l'algoritmo di *declustering* di Reasenberg [1985], dal BSI 2011 (scaricabile dalla pagina web http://ISIDe.rm.ingv.it [Mele et al., 2010a]) sono stati esclusi preventivamente tutti i probabili eventi di natura antropica (circa 500 esplosioni in cava; capitolo 4), i terremoti con profondità ipocentrale \geq 38 km e la sismicità di confine. Il data set così selezionato è costituito da 15646 terremoti dei quali 12862 appartengono a 591 *cluster.*

Per individuare le sequenze sismiche, da questa prima lista di *cluster* sono state selezionate quelle che soddisfano almeno uno dei seguenti due criteri:

- almeno 10 terremoti di cui almeno uno di magnitudo M_L 2.5;
- almeno 20 terremoti a prescindere dalla loro magnitudo.

	Area epicentrale Provincia (Comune)	1° evento	Durata	n° ev.	Ev	zento eq	uivalen	te	Evento di tudo ma	magni- ssima	Evento se in magn	condo itudo
n°		tempo origine	(giorni)		Lat. N	Lon. E	Prof.	M _L	Tempo or.	M _L	Tempo or.	M _L
1	Aquilano (Magliano dei Marsi)	110109 10:58	16.038	36	42.11	13.34	8.61	3.95	110109 10:58	3.8	110113 18:55	3.5
2	Pollino (Mormanno)	110109 13:49	45.359	47	39.88	16.01	7.64	2.97	110115 01:58	2.3	110217 07:54	2.1
3	Appennino bolognese	110224 20:15	35.128	19	44.34	11.48	27.51	3.33	110319 17:05	2.9	110224 20:15	2.5
4	Beneventano	110314 17:40	13.495	22	41.22	14.76	7.70	3.06	110317 10:56	2.7	110315 12:52	2.6
5	Golfo di Patti e Milazzo	110315 03:42	52.259	68	38.23	15.15	8.78	3.93	110426 21:02	3.4	110331 11:51	3.3
6	Aquilano (Ortona dei Marsi)	110324 00:30	4.133	28	41.99	13.71	13.72	2.55	110327 17:03	1.8	110327 07:56	1.7
7	Pollino (Mormanno)	110324 04:11	86.888	82	39.88	16.01	7.53	3.17	110402 16:25	2.7	110329 11:33	2.4
8	Costa calabra orientale	110325 12:26	18.940	24	38.88	16.94	3.58	4.00	110325 18:31	3.8	110325 16:18	3.5
9	Sansepolcro	110423 20:22	7.502	19	43.60	12.21	9.53	3.33	110424 07:19	3.3	110423 20:22	2.2
10	Val di Taro (Parma)	110428 20:14	43.567	39	44.63	10.02	28.95	3.39	110428 20:14	3.0	110428 21:03	2.6
11	Campoli Appennino (Frosinone)	110504 16:10	26.059	198	41.76	13.73	11.68	3.57	110509 13:18	2.8	110511 19:10	2.8
12	Etna (Catania)	110504 23:33	10.119	108	37.81	14.95	29.30	4.51	110506 15:12	4.2	110506 19:28	3.5
13	Chianti (Firenze)	110513 20:46	3.390	15	43.51	11.20	12.43	3.16	110513 20:46	3.1	110513 20:50	1.9
14	Montefeltro (Bagno di Romagna)	110524 12:40	148.558	1885	43.90	11.97	8.28	4.77	110712 06:53	4.0	110712 07:15	4.0
15	Pieve S. Stefano	110604 00:31	4.394	81	43.68	12.14	9.43	2.94	110604 04:35	2.3	110604 05:50	2.0
16	Appennino ligure (Genova)	110612 02:50	0.652	10	44.54	9.40	5.13	3.45	110612 02:50	3.2	110612 17:55	3.0
17	Appennino bolognese - modenese	110619 14:35	0.832	27	44.17	10.82	8.84	3.77	110619 14:35	3.6	110619 16:49	3.2
18	Tirreno meridionale (Palermo)	110621 10:02	3.853	8	38.38	13.59	8.21	3.64	110621 10:02	3.6	110625 06:31	2.6
19	Monti Nebrodi (Messina)	110622 09:02	48.192	402	38.03	14.75	8.28	4.66	110623 22:02	4.4	110706 09:08	3.9

m 0	Area epicentrale Provincia (Comune)	1° evento	Durata	n° ev.	Ev	vento eq	uivalen	te	Evento di tudo mas	magni- ssima	Evento se in magn	condo itudo
п-		tempo origine	(giorni)		Lat. N	Lon. E	Prof.	M _L	Tempo or.	M _L	Tempo or.	M _L
20	Sicilia centrale (Enna)	110628 20:01	52.406	41	37.77	14.46	32.52	3.41	110629 07:18	2.6	110629 07:30	2.6
21	Golfo di Patti e Milazzo	110628 20:40	135.209	110	38.21	15.12	9.22	3.55	110630 14:16	2.8	110704 20:34	2.5
22	Le Serre (Reggio Calabria)	110701 18:32	24.493	31	38.42	16.26	15.97	3.31	110701 18:32	3.0	110712 18:14	2.6
23	Monti Sabini (Rieti)	110713 03:37	16.686	17	42.44	12.71	7.85	3.85	110713 09:55	3.8	110713 03:37	3.0
24	Cilento	110713 18:44	51.395	33	39.96	15.24	12.86	2.98	110819 09:38	2.6	110815 17:24	2.5
25	Latina	110723 16:50	9.443	7	41.49	12.94	7.80	3.65	110723 16:50	3.6	110723 18:38	2.5
26	Forlivese	110728 18:09	14.790	21	44.22	11.94	9.12	2.75	110729 12:06	1.9	110730 04:15	1.9
27	Monti Martani (Perugia)	110815 10:49	23.715	23	42.83	12.55	8.11	2.42	110901 11:38	1.8	110905 07:42	1.6
28	Costa molisana	110824 10:32	8.013	22	42.18	15.02	4.69	3.28	110824 15:05	2.6	110824 15:54	2.6
29	Gran Sasso (L'Aquila)	110905 16:56	8.001	54	42.49	13.51	11.85	3.01	110911 02:32	2.3	110908 09:53	2.0
30	Appennino parmense	110908 13:01	22.937	150	44.64	10.24	21.51	4.42	110908 13:17	3.7	110910 17:28	3.4
31	Ferentino (Frosinone)	110928 23:00	14.402	17	41.68	13.27	10.09	2.83	110929 08:36	2.5	111003 15:14	2.4
32	Pollino (Mormanno)	111004 16:48	88.119	861	39.92	16.01	7.89	4.21	111123 14:12	3.6	111201 14:01	3.3
33	Val di Noto (Siracusa)	111006 07:56	7.570	21	36.98	15.04	9.30	3.76	111009 08:28	3.3	111009 17:25	3.1
34	Ascoli Piceno	111015 03:17	13.016	20	42.81	13.50	15.19	3.24	111020 11:58	2.6	111020 17:17	2.6
35	Appennino ligure (Genova)	111018 01:46	23.810	30	44.54	9.43	9.20	4.27	111020 06:11	4.0	111020 06:10	3.7
36	Teramo	111026 15:09	6.398	18	42.63	13.54	17.41	3.01	111026 23:18	2.7	111027 12:20	2.4
37	Lago di Garda	111029 04:13	15.331	12	45.72	10.92	6.21	4.35	111029 04:13	4.3	111031 22:12	3.4
38	Lucoli-Tornimparte (L'Aquila)	111030 14:40	19.392	49	42.29	13.32	9.11	3.65	111030 14:40	3.6	111031 17:53	2.1
39	Firenzuola (Firenze)	111031 19:54	2.205	13	44.18	11.40	28.11	3.05	111102 19:15	2.9	111102 19:31	2.0
40	Isole Eolie	111103 14:32	1.148	7	38.40	14.57	16.69	3.88	111103 14:32	3.7	111103 14:37	3.5
41	Capo d'Orlando (Messina)	111115 04:59	0.156	17	38.24	14.67	9.58	4.24	111115 04:59	4.2	111115 06:57	3.0
42	Appennino bolognese	111122 14:47	0.251	10	44.13	10.97	10.37	3.05	111122 18:54	2.6	111122 14:47	2.5

n° Area epicentrale Provincia (Com		1° evento	Durata	n° ev.	Ev	vento eq	uivalen	te	Evento di tudo mas	magni- ssima	Evento se in magni	condo itudo
		tempo origine	(giorni)		Lat. N	Lon. E	Prof.	M _L	Tempo or.	M _L	Tempo or.	M _L
43	Cosenza	111214 17:59	10.384	11	39.39	16.18	6.25	3.58	111217 23:20	3.4	111214 17:59	3.1
44	Teramo	111216 23:27	7.964	54	42.69	13.63	19.16	3.89	111217 03:04	3.4	111216 23:28	3.2
45	Appennino bolognese	111219 03:42	4.108	20	44.14	10.87	8.67	3.05	111219 03:42	2.5	111219 20:31	2.4
46	Appennino forlivese	111231 04:27	0.751	77	43.95	11.84	9.21	3.50	111231 04:32	3.2	111231 04:32	2.6

Tabella 3 Elenco cronologico dei cluster di eventi individuati nel BSI 2011 con l'algoritmo di Reasenberg [1985]. La tabella riporta il numero d'ordine del cluster, il nome dell'area interessata dalla sequenza, il tempo origine del primo evento della sequenza, la durata della sequenza in giorni e frazioni di giorno, il numero di eventi associati con magnitudo $M_L \ge 1.5$, i parametri del terremoto equivalente che riassume le caratteristiche mediate della sequenza, il tempo origine e la magnitudo dei due eventi maggiori della sequenza. La magnitudo dell'evento equivalente è ottenuta sommando il rilascio di momento sismico totale della sequenza. Sono stati selezionati i cluster con almeno 10 eventi e almeno un terremoto di magnitudo $M_L \ge 2.5$, i cluster con almeno 20 eventi di qualunque valore di magnitudo. I cluster con almeno due eventi e almeno un terremoto di magnitudo $M_L \ge 3.5$ sono riportati in tabella 4. **Table 3** Chronological list of clusters detected in BSI 2011 with the Reasenberg algorithm [1985]. The table reports the cluster identification number, the toponym of the area struck by the sequence, the origin time of the first event, the duration of the sequence in days,

the number of events with magnitude $M_L \ge 1.5$, the parameters of the equivalent earthquake, the origin time and magnitude of the two major earthquakes in the sequence. The magnitude of the equivalent earthquake is obtained computing the total moment release of the sequence. We selected clusters with at least 10 earthquakes and at least an event of magnitude $M_L \ge 2.5$, clusters with at least 20 events of any value of magnitude. Table 4 shows the clusters with at least two earthquakes and at least one earthquake of magnitude $M_L \ge 3.5$.

Alcune zone sono interessate da attività sismica prolungata nel tempo, come l'area del Pollino trattata in seguito; ivi appaiono, in un solo anno, vari periodi di recrudescenza dell'attività, intervallati da periodi caratterizzati da sismicità di fondo costante.

Sette sequenze sismiche (n° 1, 9, 15, 29, 36, 38 e 44 in Tab. 3), accadute durante il 2011 in un'area che comprende buona parte dell'Appennino Umbro-Marchigiano e dell'Appennino Abruzzese, sono state individuate attraverso un'analisi di dettaglio all'interno della sismicità diffusa descritta nel paragrafo 3.3. Alla sismicità di quest'area abbiamo applicato lo stesso algoritmo di Reasenberg [1985], assegnando però valori più restrittivi agli errori di localizzazione (si veda il paragrafo 3.3 per i dettagli). Tale scelta è giustificata dal fatto che le stazioni della rete sismica nazionale raggiungono nell'Appennino centrale la più alta densità di installazioni, con conseguente sensibile riduzione degli errori di localizzazione.

Il risultato finale dell'analisi dell'intero Bollettino 2011 è la lista delle 46 sequenze sismiche mostrate in tabella 3 mentre nella tabella 4 (vedi paragrafo 3.4) sono riportati i *cluster* con almeno un evento di magnitudo M_L 3.5 o superiore, che sono però esclusi dall'analisi delle sequenze perché costituiti da meno di 10 eventi.

3.2 Principali sequenze sismiche nel 2011

Procedendo sul territorio italiano da nord verso sud descriviamo brevemente le sequenze sismiche del 2011 riportando i dati salienti per ciascuna sequenza (localizzazione, data e intervallo temporale, numero di terremoti ed eventi principali).

3.2.1 Alpi sud-orientali

L'arco alpino nel corso del 2011 è stato interessato solo da una sequenza sismica avvenuta nell'area del Monte Baldo ad est del lago di Garda (Fig. 8; sequenza n° 37; si veda anche Tab. 3). La sequenza è iniziata il 29 ottobre e durata circa 15 giorni. In questo intervallo sono avvenuti solo 12 eventi sismici di cui il più forte di magnitudo locale M_L 4.3.

3.2.2 Appennino settentrionale

L'Appennino settentrionale nel corso del 2011 è stato interessato da numerose sequenze sismiche. Partendo dal settore occidentale in figura 9 sono riportate due sequenze localizzate nell'Appennino ligure. La prima (n° 16) è costituita solo da 10 eventi avvenuti tutti il 12 giugno con magnitudo massima M_L 3.2. La seconda (n° 35) è iniziata il 18 ottobre ed è durata 23 giorni; dei 30 eventi che la compongono i più rilevanti hanno avuto magnitudo M₁ 4.0 e M₁ 3.7.

Le sequenze che hanno interessato l'Appennino emiliano (n° 10, 17 e 30 in Fig. 10 e 11) tra le provincie di Parma, Bologna e Modena, sono avvenute rispettivamente ad aprile (39 eventi in 43 giorni, M_L massima 3.0), il 19 giugno (27 eventi, M_L massima 3.6) e settembre (150 eventi in 23 giorni, M_L massima 3.7). Le sequenze n° 10 e 30 hanno profondità ipocentrali comprese tra i 20 e i 30 km.

Figura 8 Sequenza sismica avvenuta nel 2011 nell'area del Monte Baldo ad est del lago di Garda. Figure 8 Seismic sequence occurred in 2011 in the Monte Baldo area, east of Garda lake.

Figura 9 Sequenze sismiche avvenute nel 2011 in Appennino Ligure. La colorazione della corona circolare (verde chiaro e rosa) indica l'appartenenza alla sequenza. **Figure 9** Seismic sequences occurred during 2011 in the Ligurian Apennines. The color of the ring (pale green and pink) indicates membership in the sequence.

Figure 10 e 11 Sequenze sismiche avvenute nel 2011 in Emilia-Romagna. Figures 10 and 11 Seismic sequences occurred during 2011 in the Emilia-Romagna region.

Nell'Appennino bolognese sono infine localizzate le sequenze sismiche n° 42 e 45 avvenute a novembre e dicembre con magnitudo massime rispettive di M_L 2.6 e 2.5 (Fig. 11).

In figura 12 sono mostrate le sequenze sismiche del settore centro-orientale dell'Appennino settentrionale (n° 3, 39, 26 e 46). Le sequenze n° 3 e 39, localizzate nell'Appennino tosco-emiliano (provincie di Firenze e Bologna), sono avvenute rispettivamente a febbraio e ottobre. La magnitudo massima per entrambe le sequenze è M_L 2.9. Nella zona del forlivese

sono localizzate le sequenze n° 26 e 46; mentre la prima è composta da 21 eventi di magnitudo modesta (M_L massima 1.9), la seconda inizia il 31 dicembre con 77 eventi in un giorno, con magnitudo massima M_L 3.2, e prosegue nei primi giorni del 2012 con altri 30 eventi di magnitudo inferiore.

Nel mese di maggio ha avuto inizio la sequenza più importante del 2011 (n° 14 in Fig. 13) avvenuta nella zona del Montefeltro (provincia di Forlì-Cesena) in prossimità del confine tra Emilia-Romagna, Toscana e Marche tra le locali-

Figura 12 Sequenze sismiche avvenute nel 2011 tra le provincie di Ravenna, Bologna, Firenze e Forlì-Cesena. **Figure 12** Seismic sequences occurred during 2011 in the Ravenna, Bologna, Firenze e Forlì-Cesena provinces.

Figura 13 Cluster della sequenza sismica del Montefeltro (Forlì-Cesena). Figure 13 Seismic sequence occurred in the Montefeltro region (Forlì-Cesena).

Figura 14 Distribuzione degli epicentri dei terremoti avvenuti tra maggio e luglio 2011 nel Montefeltro (provincia di Forlì-Cesena) e ubicazione delle stazioni sismiche della RSNI (triangoli verdi) e delle reti temporanee Rete Mobile INGV e della Fondazione Prato Ricerche (triangoli rossi) [Moretti et al., 2011]. La scala cromatica indica l'andamento temporale della sequenza (tratta da Rossi [2014]). **Figure 14** Map of the earthquakes occurred on May-July 2011 in the Montefeltro area (Forlì-Cesena province) and station sites (Italian National Seismic Network: green triangles; INGV Mobile Network and Fondazione Prato Ricerche: red triangles) [Moretti et al., 2011]. The color scale shows the timeline of the sequence (after Rossi [2014]).

tà di Bagno di Romagna, Santa Sofia, Sarsina e Verghereto, che nel corso dell'anno ha fatto registrare circa 2000 eventi [Moretti et al., 2011; Rossi, 2014].

L'area interessata dalla sequenza è di circa 70 km²; gli eventi registrati, distribuiti in due *cluster* distinti, hanno avuto una profondità ipocentrale abbastanza superficiale (8-9 km) e sono stati chiaramente avvertiti dalla popolazione.

La sequenza è iniziata il 24 maggio con un evento di M_L 3.0 alle ore 12:40 UTC, localizzato nel settore sud-orientale; l'11 luglio è stata osservata una migrazione della sismicità verso NW. Il 12 luglio sono avvenuti gli eventi più forti: alle ore 06:53 UTC di M_L 4.0 (M_w 4.1) e alle 07:15 UTC di M_L 4.0 (M_w 3.9). La coda della sequenza risulta concentrata in quest'ultimo settore (Fig. 14).

3.2.3 Appennino centrale

Partendo dal settore settentrionale sono localizzate le sequenze n° 9 e 15 (Fig. 13) nel territorio compreso tra Sansepolcro e Pieve Santo Stefano, entrambe in provincia di Arezzo. La prima ha avuto una durata di circa una settimana con 19 eventi (M_L massima 3.3) mentre la seconda, durata solo quattro giorni, ha avuto molti più eventi (81) anche se di modesta magnitudo (M_L massima 2.3). Nella zona del Chianti (provincia di Firenze) è avvenuta, nel mese di maggio, una piccola sequenza sismica (n° 13 in Tab. 3) durata solo tre giorni, costituita da 15 eventi sismici di cui uno con magnitudo M_L 3.1; le profondità ipocentrali sono intorno ai 12 km (Fig. 15). In figura 16 sono riportate diverse sequenze, alcune delle quali (n° 1, 29, 36, 38 e 44 in Tab. 3) estrapolate

dall'area con sismicità diffusa descritta nel paragrafo 3.3.

In provincia di Teramo sono state localizzate le sequenze n° 36 e 44, iniziate nei mesi di ottobre e dicembre, durate circa una settimana l'una, con profondità in entrambi i casi di circa 18 km, in linea con le profondità ipocentrali della sismicità di quest'area. Poco più a nord, in provincia di Ascoli Piceno, troviamo la sequenza n° 34 iniziata il 15 ottobre, durata un paio di settimane, durante le quali sono stati localizzati 20 terremoti (M_L massima 2.6) che hanno avuto una profondità ipocentrale media di 15 km, poco inferiore rispetto alle due sequenze descritte sopra. Nel settore occidentale dell'Appennino centrale si possono osservare le sequenze n° 23 e 27: la prima avvenuta a luglio nell'Alta Sabina (Rieti) (17 eventi in 17 giorni, M_L massima 3.8), la seconda ad agosto (23 eventi in 23 giorni, M_1 massima 1.8) nell'area dei Monti Martani (PG).

Nella provincia dell'Aquila si evidenziano quattro sequenze (n° 29, 38, 1 e 6) avvenute rispettivamente nell'area del Gran Sasso, di Lucoli–Tornimparte, di Magliano de' Marsi e di Ortona de' Marsi.

La prima si è verificata nel mese di settembre (54 eventi in 8 giorni, M_L massima 2.3), la seconda ad ottobre (49 eventi in 19 giorni, M_L massima 3.6), la terza a gennaio (36 eventi in 16 giorni, M_L massima 3.8) e la quarta a marzo (28 eventi in 4 giorni, M_I massima 1.8).

Le profondità ipocentrali degli eventi sismici di queste sequenze sono comprese tra 8 e 14 km.

3.2.4 Appennino centro-meridionale

Nel corso del 2011 le province di Latina e Frosinone sono

Figura 16 Sequenze sismiche dell'Italia centrale (n° 1, 6, 23, 27, 29, 34, 36, 38 e 44 in Tab. 3). Figure 16 Seismic sequences occurred in central Italy (n° 1, 6, 23, 27, 29, 34, 36, 38 and 44 in Tab. 3).

Figura 17 Sequenze sismiche dell'Appennino centro-meridionale nelle provincie di Frosinone e Latina.
Figure 17 Seismic sequences of the central-southern Apennines in the provinces of Frosinone and Latina.

state interessate da un'intensa attività sismica [Cimini et al., 2013]; è stato infatti possibile individuare tre distinte sequenze: n° 25, 31 e 11 (Fig. 17).

La prima (n° 25) è avvenuta a luglio nel territorio comunale di Latina. Sebbene si sia trattato di una attività sismica relativamente modesta (7 eventi in 9 giorni), la magnitudo dell'evento principale (M_L 3.6) e l'elevata densità abitativa dell'area, con il conseguente risentimento tra la popolazione, la rendono di interesse.

In provincia di Frosinone troviamo le altre due sequenze. Per la prima (n° 31) l'area interessata è il comune di Ferentino; l'attività sismica è iniziata a settembre ed è durata un paio di settimane nel corso delle quali si sono verificati 17 terremoti (M_L massima 2.5). Nel mese di maggio è iniziata nella zona di Campoli Appennino (ad est di Sora) la sequenza n° 11, più consistente rispetto alle altre due; è durata, infatti, circa un mese nel corso del quale sono stati registrati 198 terremoti di cui il più forte ha avuto magnitudo M_1 2.8.

Scendendo lungo l'Appennino, troviamo la sequenza n° 4, avvenuta a marzo e localizzata poco a nord di Benevento (Fig. 18); in 13 giorni sono stati localizzati 22 eventi sismici (M_1 massima 2.7).

Sempre in figura 18 è visibile infine la sequenza n° 28 verificatasi ad una decina di km al largo della costa molisana. Iniziata il 4 marzo, è durata 13 giorni in cui sono stati registrati 22 eventi di magnitudo modesta (M_1 massima 2.7).

3.2.5 Arco calabro e Sicilia

La figura 19 mostra la sequenza avvenuta al largo della costa del Cilento. Tale sequenza è stata localizzata a circa 5 km dalla costa tra Capo Palinuro e Marina di Camerota, in provincia di Salerno; registrata tra luglio e agosto, è costituita da

Figura 18 Cluster di terremoti avvenuti nella provincia di Benevento (n° 4) e al largo della costa molisana (n° 28). **Figure 18** Cluster of earthquakes in the province of Benevento (n° 4) and offshore the Molise coast (n° 28).

Figura 19 Sequenza sismica al largo del Cilento (prov. di Salerno). **Figure 19** Seismic sequence offshore the province of Salerno.

33 terremoti con magnitudo massima $\rm M_L$ 2.6 e profondità ipocentrali di circa 13 km.

Un discorso a parte merita la sismicità localizzata nella zona del Pollino tra i comuni di Rotonda (PZ), Mormanno, Laino Borgo, Castrovillari e Morano Calabro (CS). Iniziata nel 2010, l'attività sismica nell'area del Pollino ha mostrato nel corso del 2011, e anche negli anni successivi, un andamento spazio-temporale incostante; sciami e sequenze di tipo mainshock-aftershocks si sono alternati a periodi di minore attività sismica o di assenza di attività. le, con incrementi e diminuzioni dell'attività e con valori di magnitudo che sono rimasti inferiori a M_L 4.0 [De Gori et al., GNGTS 2014].

Durante l'anno sono stati individuati 3 periodi di maggiore attività chiaramente distinguibili dalla comunque importante sismicità di fondo (Fig. 20). La prima e la seconda sequenza (n° 2 e 7) sono iniziate a gennaio e marzo: 47 eventi in 45 giorni (M_L massima 2.3) e 82 eventi in 86 giorni (M_L massima 2.7), rispettivamente. La terza sequenza (n° 32), iniziata il 4 ottobre e protrattasi anche nel 2012, nel corso del 2011 ha fatto registrare 861 eventi di cui il più forte ha avuto magni-

Nel corso del 2011 il tasso di sismicità è stato molto variabi-

Figura 20 Cluster di terremoti avvenuti nella zona del Pollino durante il 2011. Figure 20 Cluster of earthquakes occurred in the Pollino area during 2011.

tudo M_L 3.6. Le profondità ipocentrali di questi eventi sono comprese tra i 5 e i 10 km.

Ancora in Calabria sono avvenute altre tre sequenze (Fig. 21). Da Nord, la prima (n° 43) ha interessato la provincia di Cosenza nei pressi del comune di Montalto Uffugo (11 terremoti in 10 giorni con magnitudo massima M_L 3.4); la seconda (n° 8) è stata localizzata a circa 5 km dalla costa orientale della Calabria (Capo Rizzuto), e risulta costituita da 24 eventi in 19 giorni con profondità media relativamente superficiale (circa 5 km) e magnitudo massima M_L 3.8. Infine nella zona de Le Serre (RC) si è verificata la sequenza sismica n° 22 iniziata a luglio, durata 24 giorni, con 31 eventi sismici registrati (magnitudo massima M_L 3.0) e con una profondità ipocentrale media di 16 km.

Sono ben nove le sequenze sismiche localizzate in Sicilia nel corso del 2011 (n° 5, 12, 18, 19, 20, 21, 33, 40 e 41); la maggior parte di esse è concentrata nelle provincie di Messina e Catania, mentre altre due sequenze sono avvenute nella provincia di Palermo e di Siracusa-Ragusa (Fig. 22).

Nel settore occidentale della Sicilia troviamo la sequenza n° 18 avvenuta a giugno in mare a circa 20 km dalla costa palermitana e consistita di 8 terremoti in 4 giorni di cui il più forte ha avuto magnitudo M_1 3.6.

Nel settore sud-orientale della Sicilia, e precisamente nella Val di Noto (provincie di Siracusa e Ragusa), troviamo la sequenza n° 33 avvenuta ad ottobre (21 eventi in 7 giorni, M_1 massima 3.3).

In provincia di Catania è stata registrata nel mese di maggio la sequenza n° 12; la zona interessata è quella del versante nord-occidentale dell'Etna, tra i comuni di Bronte, Maletto e Randazzo. In circa 10 giorni sono stati localizzati 108 eventi di cui il più forte ha avuto magnitudo M_L 4.2, le profondità ipocentrali di questo *cluster* si trovano mediamente a circa 30 km di profondità, al di sotto dell'edificio vulcanico.

Figura 21 Sequenze sismiche n° 8, 22 e 43 localizzate in Calabria. Figure 21 Seismic sequences n° 8, 22 e 43 occurred in Calabria.

Figura 22 Sequenze sismiche avvenute nel 2011 in Sicilia. Figure 22 Seismic sequences occurred during 2011 in Sicily.

Nella Sicilia centrale, vicino Nicosia (provincia di Enna), si è verificato il *cluster* n° 20 iniziato nel mese di giugno, caratterizzato da una durata di circa 52 giorni con 41 eventi e con due terremoti di magnitudo M_L 2.6. Questi eventi si trovano a circa 32 km di profondità ipocentrale, valori caratteristici della sismicità in quest'area.

Nella provincia di Messina sono avvenuti gli altri cinque *cluster* individuati in Sicilia, di cui quattro per la gran parte ubicati in mare a pochi chilometri dalla costa settentrionale. Le sequenze n° 5 e 21, localizzate nel Golfo di Patti e Milazzo, sono iniziate nei mesi di marzo e giugno, e hanno avuto rispettivamente magnitudo massima M_L 3.4 e M_L 2.8. Entrambi i *cluster* sono caratterizzati da una tasso di sismicità costante all'interno della sequenza, senza picchi significativi di sismicità: 68 eventi in 52 giorni il primo, 110 eventi in 135 giorni il secondo.

Le sequenze n° 40 e 41, avvenute a novembre, sono localizzate tra le Isole Eolie e la costa settentrionale messinese, in particolare a circa 10 km a S dell'Isola di Filicudi la prima, mentre la seconda ad una decina di chilometri al largo di Capo d'Orlando. Risultano molto concentrate temporalmente e con valori di magnitudo relativamente alti: 7 eventi in un giorno la prima (M_L massima 3.7 e profondità intorno ai 17 km), 17 eventi in poche ore la seconda (M_L massima 4.2 e profondità intorno ai 9 km).

Infine la sequenza sismica n $^\circ\,$ 19, iniziata anche questa nel

mese di giugno, si è concentrata nella zona dei Monti Nebrodi. È la sequenza più rilevante localizzata in Sicilia nel 2011 sia in termini di magnitudo sia di numero di repliche; è durata circa 48 giorni durante i quali sono stati registrati 402 terremoti con profondità ipocentrali intorno agli 8 km. L'evento più forte ha avuto magnitudo M_I 4.4.

3.3 Sismicità diffusa

Anche per l'analisi della sismicità italiana del 2011, analogamente alle analisi degli anni precedenti [Mele et al., 2010b; Arcoraci et al., 2012; Battelli et al., 2013], la discriminazione delle sequenze sismiche nella zona dell'Appennino centrale risulta molto difficoltosa a causa del tasso di sismicità di fondo, più alto rispetto al resto d'Italia durante tutto l'anno. Come si può osservare dalla figura 23, l'area dove si riscontra la sismicità diffusa (6307 eventi sismici) è molto vasta e va da N a S in direzione appenninica dalla zona del Casentino, tra i comuni di Sansepolcro e Pieve Santo Stefano (AR), fino alla bassa Valle dell'Aterno e l'intera provincia di L'Aquila. In particolare si notano due zone dove l'addensamento dei terremoti è maggiore: la Valtiberina e i Monti Reatini.

La sismicità presente nella Valtiberina, ed in particolare nella zona di Gubbio, fa parte di un periodo sismico molto lungo, iniziato già nel 2010 [Battelli et al., 2013], che nel corso del 2011, per grandi linee, presenta una distribuzione temporalmente omogenea degli eventi sismici (circa 2000, magnitudo

massima M_L 2.8; Fig. 24), senza picchi evidenti di sismicità. Per quel che riguarda la zona dei Monti Reatini, compresi tra le provincie di L'Aquila e di Rieti, la notevole concentrazione di sismicità è dovuta probabilmente anche alla lunga coda della sequenza sismica dell'aquilano iniziata nel 2009. In quest'area sono visibili anche alcuni *cluster* di eventi che però sono difficilmente separabili dalla sismicità di fondo.

Altre concentrazioni spaziali di eventi, visibili nella figura 23 e associabili a sequenze, sono state invece individuate applicando l'algoritmo di Reasenberg [1985] al dataset della sismicità diffusa, attribuendo però valori inferiori agli errori di localizzazione (2 km in orizzontale e 5 km in verticale). Sono state così individuate le sequenze n° 1, 9, 15, 29, 36, 38 e 44 in Tab. 3.

3.4 Cluster significativi

L'algoritmo di Reasenberg [1985], oltre a selezionare le sequenze sismiche del 2011 precedentemente illustrate, ha permesso di individuare un'altra serie di piccoli raggruppamenti di eventi (*cluster*) che a causa del loro basso numero di repliche (minore di 10) sono stati esclusi dal computo totale. Nella tabella 4 sono riportati i 6 *cluster* più significativi del 2011, aventi almeno 2 eventi e una magnitudo massima uguale o superiore a M_L 3.5. Per completezza di informazione si ricorda che altri due *cluster*, localizzati nel canale di Sicilia (24 aprile, M_L 4.3, vicino Malta e 23 maggio, M_L 3.7, vicino le coste libiche), sono stati esclusi in quanto molto distanti dalle coste italiane.

Figura 23 Sismicità diffusa del 2011 nell'Appennino centrale, compresa tra le provincie di Arezzo e dell'Aquila. Figure 23 Widespread seismicity of 2011 in central Apennines between the provinces of Arezzo and L'Aquila.

Figura 24 Andamento della sismicità nel corso del 2011 in Valtiberina. Non sono evidenti picchi di sismicità. L'evento maggiore ha magnitudo M₁ 2.8.
 Figure 24 Trend of seismicity in the Tiber Valley during 2011. No peak of seismicity is evident. The largest event has magnitude M₁ 2.8.

Il *cluster* più significativo tra quelli riportati in tabella 4 è il n° 2, avvenuto nella pianura padano-veneta (RO), che ha avuto un risentimento in tutto il centro – nord Italia [http://mappe.haisentitoilterremoto.it/2218487900/ems.jpg]. Il secondo evento, in ordine di magnitudo (n° 3 in Tab. 4), è avvenuto lungo il versante italiano delle Alpi Cozie (TO) e anche questo ha avuto un notevole risentimento tra la popolazione [http://mappe.haisentitoilterremoto.it/2218599510/ems.jpg].

4. Esplosioni in cava e attività antropica

L'analisi degli eventi del BSI 2011, tramite il software Zmap [Wiemer, 2001], ha permesso di individuare una nuova area caratterizzata da sismicità di tipo antropico che non era stata rilevata negli studi analoghi sulla sismicità degli anni precedenti. Questa zona si trova in provincia di Palermo, sulle colline a ridosso della città, dove sono visibili numerose cave estrattive. Nell'area non vengono registrati molti eventi a causa della scarsa densità locale delle stazioni della Rete

m 0	Area opicontrale	n° ev.		Evento di	magnitudo m	assima	
п	Area epicentiale		Tempo or.	Lat. N	Lon. E	Prof.	M _L
1	Stretto di Messina	3	1103090423	37.815	15.410	10.7	3.8
2	Pianura padano-veneta	5	1107171830	45.010	11.367	2.4	4.8
3	Alpi Cozie	4	1107251231	45.016	7.365	11.0	4.3
4	Etna	4	1109092223	37.813	14.873	28.0	3.9
5	Pianura veneta	4	1109131835	45.841	12.106	2.2	3.6
6	Golfo di S. Eufemia	3	1110141730	38.865	16.335	10.9	3.7

Tabella 4 Elenco dei cluster più significativi non inclusi nella tabella 3, con numero di eventi inferiore a 10 ed almeno un evento di magnitudo $M_L \ge 3.5$. **Table 4** List of most significant clusters not included in table 3, with less than 10 events and at least one event of magnitude $M_1 \ge 3.5$.

Sismica Nazionale. Tuttavia nel 2011, tra luglio e ottobre, sono stati localizzati 8 scoppi avvenuti tutti tra le ore 8 e le 10 GMT, con magnitudo M_L comprese tra 0.7 e 1.5. I limiti geografici entro cui sono stati localizzati questi eventi sono: Lat 38.160 N – 38.200 N, Lon 13.190 E – 13.310 E. La stazione sismica più vicina è MPG (Monte Pellegrino, PA). La figura 25 mostra la registrazione di uno di questi eventi avvenu-

to il 27 ottobre alle ore 09:08 GMT. La registrazione ha le stesse caratteristiche già osservate nei sismogrammi registrati in stazioni vicine ad altre cave note [Mele et al., 2010b; Arcoraci et al., 2012; Battelli et al., 2013]; in particolare si può osservare l'alta frequenza nella parte iniziale della registrazione, seguita da una fase ad ampiezza maggiore dovuta ad una onda di superficie.

Figura 25 Sismogramma della componente verticale della stazione sismica di MPG (Monte Pellegrino, PA) generato da una esplosione in cava a cielo aperto vicina a Palermo. L'onda P iniziale, ad alta frequenza, è seguita da una seconda fase più ampia dovuta ad un'onda superficiale. **Figure 25** Seismogram (vertical component) of the station MPG (Monte Pellegrino, PA) due to an explosion in a quarry

rigure 25 Seismogram (Vertical component) of the station MPG (Monte Pellegrino, PA) due to an explosion in a quarry close to Palermo, Sicily. The initial P phase is followed by a secondary phase due to a surface wave.

Figura 26 Caratteri della sismicità di origine antropica registrata vicino Gubbio (PG) [tratto da Latorre et al., 2014]. (a) Mappa dell'area con l'ubicazione della stazione sismica MURB (triangolo giallo). I triangoli grigi rappresentano le altre stazioni sismiche che hanno registrato i segnali a bassa frequenza (LF) nell'area. Il simbolo verde indica la posizione del cementificio di Ghigiano (Gubbio). I puntini rossi sono gli epicentri di alcuni eventi LF analizzati. (b) Registrazione delle tre componenti della stazione MURB di un evento LF filtrato con un passa-banda tra 1 e 10 Hz. (c) Rapporto spettrale segnale–rumore delle tre componenti, calcolato su due finestre di 20 secondi del segnale LF e del rumore.

Figure 26 Main features of the antropic seismicity recorded in the Gubbio (PG) area [after Latorre et al., 2014]. (a) Map view of the region and location of the seismic station MURB (yellow triangle). Gray triangles represent the other seismic stations at which we detect LF signals in this area. The green diamond shows the position of the huge cement plant operating in the Gubbio area (Ghigiano). Red stars are the epicenters of some LF events. (b) Three-component velocity signals of LF events, bandpass filtered between 1 and 10 Hz, recorded at the MURB station. (c) Signal to noise velocity spectral ratio computed for the three components Z, NS, and EW, on two windows of 20 s of LF signal and noise.

Sempre nel corso del 2011, in particolare durante i mesi di maggio e giugno, sono stati registrati in varie aree italiane una serie di eventi legati ad attività antropica. Tali eventi risultano tuttavia diversi rispetto alle classiche esplosioni in cava e sono probabilmente correlabili ai processi di lavorazione dei materiali estratti [come evidenziato da Latorre et al., 2014]: le registrazioni sono verosimilmente generate dall'attivazione dei forni rotanti o macine o altri macchinari utilizzati per la produzione del cemento. Grazie all'alta densità di stazioni sismiche nel settore umbro-marchigiano è stato possibile rilevare questi eventi, in particolare nell'area di Gubbio (PG) in corrispondenza del cementificio di Ghigiano (Fig. 26a). L'area estrattiva limitrofa, molto attiva, era stata già individuata da Arcoraci et al. [2012]. In figura 26b è mostrata la registrazione di uno di questi eventi sulle tre componenti della stazione più vicina (MURB). In generale i caratteri peculiari di queste registrazioni sono: segnale monocromatico con

piccola ampiezza e bassa frequenza (LF), primo arrivo piuttosto chiaro (fase P) e un successivo arrivo meno evidente (probabile onda superficiale), durata del segnale compresa tra 10 e 25 secondi circa. In figura 26c mostriamo il rapporto spettrale segnale-rumore delle tre componenti dove si evidenziano due picchi significativi a 2 e 5 Hz che probabilmente corrispondono rispettivamente alle onde superficiali e al primo arrivo. Nel lavoro di Latorre et al. [2014] viene anche presentata una analisi della distribuzione spazio-temporale di questo tipo di eventi nell'area di Gubbio, che mette in luce come la maggior parte degli ipocentri sia notevolmente "clusterizzata" in corrispondenza del cementificio di Ghigiano. La distribuzione temporale degli eventi a bassa frequenza presenta un andamento piuttosto regolare che potrebbe essere collegato alle diverse fasi di lavorazione dei materiali estratti e ai diversi momenti di utilizzo dei macchinari nel processo di produzione del cemento (frantumazione, fresatura, calcinazione).

Figura 27 (A) Cave orizzontali a gallerie per l'estrazione di materiale calcareo presso Grezzana e Alcenago, in provincia di Verona; (B, C) Sinkhole e fenomeni di fratturazione originati dal cedimento delle gallerie di estrazione. Figure 27 (A) Horizontal tunnels in a calcareous limeston quarry near Grezzana and Alcenago (Verona); (B, C) Sinkhole and surface fractures caused by the collapse of quarry tunnels.

Nella figura 27 vengono infine mostrati gli effetti sull'ambiente di un evento generato indirettamente dall'attività estrattiva di una cava, avvenuto il 2 ottobre 2011 alle ore 01:12 UTC nella zona pedemontana veneta, tra Grezzana e Alcenago, in provincia di Verona. L'evento in questione è localizzato in una zona collinare (400-500 m.s.l.m.) dove sono presenti delle cave orizzontali a gallerie in cui si effettua l'attività estrattiva di materiale calcareo (Fig. 27A). Il cedimento delle gallerie sottostanti ha causato nella parte alta delle colline l'attivazione di un fronte di frana di 700-800 m che ha generato una serie di spaccature nel terreno (Fig. 27C) e l'apertura di sinkholes anche di notevoli dimensioni (Fig. 27B). Il fenomeno franoso è stato registrato da alcune decine di stazioni sismiche della RSNI, tra cui le più vicine sono quelle di ROVR (Rovereto, TN) e MAGA (Magasa, BS) di cui in figura 28 è riportato il sismogramma. Le caratteristiche del sismogramma di una frana verranno illustrate nel paragrafo seguente.

5. Frane

Il territorio italiano, a causa del suo diffuso dissesto idrogeologico, è colpito ogni anno da un rilevante numero di frane, che possono essere classificate in base alle modalità con cui avvengono e a seconda dei terreni coinvolti. In questo paragrafo vengono analizzate le frane definite "*da crollo*"; esse avvengono generalmente su pareti verticali o molto inclinate e coinvolgono grandi quantità di materiali lapidei, che si distaccano a causa dell'erosione o fratturazione della roccia originaria. Questi fenomeni sono molto diffusi nel nostro Paese sia sull'arco alpino sia in molte zone dell'Appennino. Il 27 dicembre, alle ore 17:25 GMT, una enorme frana è avvenuta lungo il versante svizzero del Pizzo Cengalo (3369 m s.l.m.), in Val Bondasca.

Il fenomeno franoso è avvenuto nella parte alta del versante nord della cima più alta delle Alpi Retiche occidentali, che si trovano sulla linea di confine tra l'Italia (provincia di Sondrio) e la Svizzera. L'evento, preceduto nei mesi antecedenti da frane di minore entità, ha avuto una dimensione stimata in diversi milioni di metri cubi di materiale (Fig. 29).

La frana, a cui il Servizio Sismico Svizzero (SED) ha attribuito una magnitudo Richter M₁ 2.7, è stata registrata da quasi tutte le stazioni sismiche del nord Italia, dalla rete svizzera, austriaca e tedesca. La figura 30 mostra i relativi sismogrammi della componente verticale di tre stazioni sismiche: TUE (Stuetta, SO), BRMO (Bormio, SO) e MAGA (Magasa, BS) della RSNI, distanti rispettivamente 30, 60 e 100 km circa dal luogo del crollo. Il sismogramma caratteristico di una frana si differenzia da quello di un terremoto di origine tettonica per la sua forma simmetrica: al primo arrivo emergente, che rispecchia l'inizio lento della frana, segue la fase più energetica del crollo principale, seguita infine dalla fase di messa a riposo. Un terremoto di origine tettonica, con una magnitudo paragonabile a quella della frana in questione, sarebbe stato registrato da una stazione sismica posta alla stessa distanza con dei primi arrivi molto impulsivi rispetto a quelli visibili nella figura 30 e con un contenuto maggiore di alta frequenza, soprattutto nella parte iniziale. Il segnale registrato ha una durata di quasi due minuti.

Figura 28 Sismogramma della componente verticale delle stazioni sismiche di ROVR (Rovereto, TN) e MAGA (Magasa, BS) generato da un crollo di gallerie in una cava presso Verona (2 ottobre 2011, ore 01:12 UTC). **Figure 28** Seismogram (vertical component) of the stations ROVR (Rovereto, TN) and MAGA (Magasa, BS) due to a collapse of quarry tunnels near Verona (October 2nd, 2011, 01:12 UTC).

Figura 29 Immagine tratta dal sito http://www.sportdimontagna.com che evidenzia la frana del versante nord di Pizzo Cengalo. Figure 29 Landslide on the north side of Pizzo Cengalo [image taken from http://www.sportdimon-tagna.com].

Un altro evento franoso si è verificato tra settembre e ottobre sul versante occidentale dell'Aiguille du Petit Dru (3733 m s.l.m.), una cima che fa parte del massiccio del Monte EMV del Servizio Sismico Svizzero (SED). Data la minore energia prodotta da questa frana rispetto al caso precedentemente illustrato, si è reso necessario filtrare i segnali per eli-

Figura 30 Sismogrammi digitali della componente verticale delle stazioni sismiche della Rete Sismica Nazionale Italiana BRMO (Bormio, SO), MAGA (Magasa, BS) e TUE (Stuetta, SO) relativi alla frana del versante nord di Pizzo Cengalo. Figure 30 Digital record (vertical component) of the landslide on the north side of Pizzo Cengalo at stations of the Italian National Seismic Network BRMO (Bormio, SO), MAGA (Magasa, BS) and TUE (Stuetta, SO).

Bianco, vicino Chamonix, in territorio francese.

La frana è stata caratterizzata da quattro distinte fasi avvenute l'11 settembre (ore 08:14 GMT), il 12 settembre (ore 05:39 e 05:43 GMT) e infine il 30 ottobre (ore 06:12 GMT) che hanno causato il distacco di decine di migliaia di metri cubi di roccia. La figura 31 mostra le registrazioni digitali della componente verticale di alcune stazioni sismiche relative al primo evento franoso. In particolare dall'alto verso il basso si può osservare il segnale di BNI (Bardonecchia, TO), RSP (Reno Superiore, TO) e EMV (Vieux Emosson, Svizzera). La stazione BNI fa parte della Rete Sismica Nazionale Italiana, RSP dell'IGG Seismic Network dell'Università di Genova e

Figura 31 Registrazioni digitali della componente verticale delle stazioni sismiche BNI (Bardonecchia, TO), RSP (Reno Superiore, TO) e EMV (Vieux Emosson, Svizzera) della frana del versante occidentale dell'Aiguille du Petit Dru. **Figure 31** Digital records (vertical component) of the landslide on the west side of the Aiguille du Petit Dru at stations BNI (Bardonecchia, TO), RSP (Reno Superiore, TO) and EMV (Vieux Emosson, Switzerland).

Tabella ria	assuntiva	
Rete Sismica Nazionale Italiana (RSNI)	359 stazioni sismiche (vedi	allegato A per dettaglio)
Terremoti localizzati	16499	
Mamin da massima	4.8 M _L	
	Pianura padano-veneta – n	n° 2 in tabella 4
	$0 < M_L \le 1$	5.088
	$1 < M_L \le 2$	9.569
Distribuzione degli eventi in classi di magnitudo	$2 < M_L \le 3$	1.615
	$3 < M_L \le 4$	208
	M _L > 4	19
Magnitudo minima di completezza (M _C)	1.5	
Numero di sequenze	46 (vedi figura 7 e tabella 3	3)
Drin sinali so su ongo	Montefeltro (Bagno di Rom	magna) – n° 14 in tabella 3
Principan sequenze	Pollino (Mormanno) – n°	2, 7 e 32 in tabella 3
Eventi di origine antropica	circa 500	

Tabella 5 Sintesi della sismicità del BSI 2011. Table 5 Synthesis of the seismicity in the BSI 2011.

minare i microsismi, utilizzando un filtro passa alto con *corner frequency* a 1 Hz e 2 poli. I segnali ottenuti mostrano chiaramente la classica forma simmetrica della frana con primi arrivi emergenti, la durata della registrazione dell'evento è di circa un minuto.

6. Sintesi della sismicità analizzata nel 2011

In tabella 5 vengono riportate le principali caratteristiche della sismicità analizzata nel BSI 2011.

7. Qualità delle localizzazioni

In accordo con quanto riportato da Amato e Mele [2008], la figura 32 mostra con una unica scala di valori Q = Q1+Q2, variabile da -5 a +5, la qualità delle localizzazioni del BSI per l'anno 2011 per gli eventi di $M_{\rm I} \ge 2.0$. Il parametro Q

combina insieme due fattori di qualità, in tutto simili a quelli usati in *Hypoinverse-2000* [Klein, 2002]: il primo fattore Q1 (Tab. 6) tiene conto degli errori formali ottenuti al termine della localizzazione (RMS dei residui ed errori orizzontale e verticale della localizzazione); il secondo fattore di qualità Q2 (Tab. 7) tiene conto delle caratteristiche geometriche della distribuzione delle stazioni intorno all'epicentro (gap azimutale e distanza della stazione più vicina confrontata con la profondità dell'ipocentro). La figura 32 mostra in mappa le localizzazioni del BSI 2011 con l'indicazione della qualità, della profondità e della magnitudo degli ipocentri.

I terremoti con epicentro in mare hanno localizzazioni di scarsa qualità. Sebbene siano attivi scambi di dati in tempo reale con le reti francesi, svizzere e austriache, gli epicentri in terra appaiono ancora poco definiti sull'arco alpino, in area di confine. Rimangono ancora scarsamente definite le localizzazioni dei terremoti in area garganica e in Sicilia occidentale.

Qualità Q1	RMS pesato	Errore orizzontale	Errore verticale	Numero pesato di fasi (WNP)	Score Q1
А	< 0.45 s	< 2 km	< 4 km	≥ 3	1.5
В	< 0.90 s	< 5 km	< 10 km	≥ 3	0.5
С	< 1.50 s	< 10 km	< 10 km	≥ 3	-0.5
D	≥ 1.50 s	≥ 10 km	≥ 10 km	< 3	-1.5

Tabella 6 Parametro di qualità Q1 utilizzato per classificare le determinazioni ipocentrali in funzione della bontà della soluzione e degli errori formali. Le condizioni poste per le classi A, B e C sono da considerare tutte necessarie. Un terremoto ha qualità D se non viene rispettata anche solo una delle condizioni necessarie per l'assegnazione della classe C; quindi ciascuna condizione espressa per la classe D è sufficiente. Il valore WNP (Weighted Number of Phases) viene calcolato come somma dei pesi relativi assegnati alle fasi usate per la localizzazione (ogni peso può assumere valori da 0.0 a 1.0).

Table 6 Quality ranking Q1 used to class hypocenters according to goodness-of-fit and formal errors. The conditions for classes A, B and C are all necessary. An earthquake has quality D if at least one of the conditions necessary to obtain class C is not verified. The WNP value (Weighted Number of Phases) results from the sum of the relative weights (which values range between 0.0 and.1.0) assigned to the associated arrival times.

Qualità Q2	Massimo gap azimutale	Distanza stazione più vicina	Numero pesato di fasi (WNP)	Score Q2
А	< 90°	< 10 km o < Depth	≥ 6	3
В	< 135°	< 20 km o $< 2^*Depth$	≥ 6	1
С	< 180°	< 100 km	≥ 6	-1
D	$\geq 180^{\circ}$	≥ 100 km	< 6	-3

Tabella 7 Parametro di qualità Q2 usato per classificare gli ipocentri in funzione della distribuzione geometrica delle stazioni utilizzate per la localizzazione, della distanza dall'epicentro della stazione più vicina (eventualmente paragonata con la profondità dell'ipocentro) e del numero pesato di fasi. Tutte le condizioni per le classi A, B e C sono da considerarsi necessarie per quella classe. Ciascuna condizione per la classe D è sufficiente.

Table 7 Quality ranking Q2 used to class hypocenters according to stations geometry, distance of the closest station from the epicenter, and weighted number of phases. All the conditions for classes A, B and C are necessary. An earthquake has quality D if one or more conditions D are verified.

QG

Figura 32 Mappa degli eventi registrati dalla RSNI nel 2011 con magnitudo $M_L \ge 2.0$. La dimensione dei simboli è proporzionale alla magnitudo, il colore indica la qualità della localizzazione, la forma indica la profondità. La grande maggioranza delle localizzazioni in area peninsulare risulta di buona qualità; hanno spesso scarsa qualità le localizzazioni di terremoti che ricadono in mare e al di fuori dei confini nazionali, quelli nella parte più meridionale della Sicilia occidentale (provincie di Ragusa e Siracusa), gli eventi presso i confini sloveno, austriaco e francese, e quelli nell'area del Promontorio del Gargano. Inoltre hanno a volte scarsa qualità le localizzazioni di eventi in Pianura Padana; la causa è da ricercare sia nell'alto rumore di fondo, che impedisce letture dei tempi di arrivo di buona qualità sulle registrazioni delle stazioni ivi installate, sia nella inadeguatezza del modello di velocità standard (Tab. 2) utilizzato a scala nazionale e che non riproduce le importanti eterogeneità laterali dell'area.

Figure 32 Map of the events with magnitude $M_L \ge 2.0$, recorded by the RSNI in 2011. The size of the symbols is proportional to the magnitude, the color indicates the quality of the location, the shape indicates the depth. The majority of locations in the peninsular area has good quality; localizations have often poor quality when earthquakes occurred offshore, or outside national borders, as soon as in the southern part of western Sicily (provinces of Ragusa and Syracuse) and near the border with Slovenia, Austria and France or in the Gargano Promontory. We have also poor quality localizations in the Po Valley; the cause is to be found both in the background noise that prevents good readings at the stations installed therein, and in the inadequacy of the velocity crustal model used in so a remarkably heterogeneous area.

Analisti del BSI per l'anno 2011

Luca Arcoraci Patrizia Battelli Michele Berardi Corrado Castellano Giulio Lozzi Andrea Malagnini Alessandro Marchetti Giorgio Modica Anna Nardi Mario Pirro Antonio Rossi Sabina Spadoni

Ringraziamenti

Si ringraziano Antonio Avallone e Diana Latorre rispettivamente per le informazioni sulle stazioni della rete GPS dell'INGV e per le indicazioni ed i suggerimenti relativi al capitolo 4.

Le figure 1, 2 e 32 sono state realizzate con lo strumento grafico GMT [Wessel and Smith, 1991].

Acknowledgments

We would like to thank Antonio Avallone and Diana Latorre for providing information on GPS stations of INGV and useful suggestions related to chapter 4.

Figures 1, 2 and 32 have been realized using the GMT free software [Wessel and Smith, 1991].

Bibliografia

- Amato, A. e F. Mele, (2008). Performance of the INGV National Seismic Network from 1997 to 2007. Annals of Geophysics, 51 (2-3), 417 - 431.
- Arcoraci, L., Battelli, P., Castellano, C., Marchetti, A., Mele, F., Nardi, A., Pirro, M., e A. Rossi, (2012). *Bollettino Sismico Italiano 2009*. Quaderni di Geofisica, 99, INGV, Roma, 49 pp.
- Battelli, P., Arcoraci, L., Berardi, M., Castellano, C., Marchetti, A., Mele, F., Nardi, A., e A. Rossi, (2013). *Bollettino Sismico Italiano 2010*. Quaderni di Geofisica, 115, INGV, Roma, 52 pp.
- Chiarabba, C., De Gori, P., e F. Speranza, (2008). The Southern Tyrrhenian Subduction Zone: Deep geometry, magmatism and Plio-Pleistocene evolution. Earth and Planet. Sci. Lett., 268, 408-423.
- Cimini, G.B. et al., (2013). Studio della Sismicità nell'area tra Lazio, Abruzzo e Molise – L'esperimento di sismica passi-

va del progetto SLAM. Rapporti Tecnici INGV, 255, 22 pp.

- Console, R., De Simoni, B., e A. Di Sanza, (1988). *Riesame della relazione magnitudo-durata*. Atti VII° Convegno. G.N.G.T.S., Roma, 51-62.
- De Gori, P., Margheriti, L., Lucente, F.P., Govoni, A., Moretti, M., Pastori, M., Marchetti, A., Di Giovambattista, R., Anselmi, M., De Luca, P., Nardi, A., Piana Agostinetti, N., Latorre, D., Piccinini, D., Passarelli, L. e C. Chiarabba, (2014). 2010-2014 seismic activity images the activated fault system in the Pollino area, at the Apennines-Calabrian arc boundary region. 33° Conv. Naz. GNGTS, Novembre 2014.
- Hutton, L.K. e M. Boore, (1987). The M_L scale in southern California, Bull. Seism. Soc. Am., 77, 2074-2094.
- ISIDe Working Group (INGV, 2010-2013). Italian Seismological Instrumental and parametric database: http://iside.rm.ingv.it.
- Kanamori, H. e Anderson, D.L., (1975). Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am., 65, 1073–1095.
- Klein, F.W., (2002). User's Guide to HYPOINVERSE–2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes. U.S. Geological Survey Open-File Report 02–171, 123 pp.
- Latorre, D., Amato, A., Cattaneo, M., Carannante, S. e A. Michelini, (2014). *Man-induced low-frequency seismic events in Italy*. Geoph. Res. Lett., 41, 8261-8268, doi: 10.1002/2014GL062044.
- Mele, F.M., Marcocci, C., Bono, A. e A. Marchetti, (2010a). ISIDe, Italian Seismic Instrumental and parametric Data base. INGV, CNT: http://ISIDe.rm.ingv.it/.
- Mele, F., Arcoraci, L., Battelli, P., Berardi, M., Castellano, C., Lozzi, G., Marchetti, A., Nardi, A., Pirro, M., e A. Rossi, (2010b). *Bollettino Sismico Italiano 2008*. Quaderni di Geofisica, 85, INGV, Roma, 45 pp.
- Moretti, M. et al., (2011). La sequenza sismica nel Montefeltro (Forlì-Cesena): l'intervento della Rete Sismica Mobile. Rapporti Tecnici INGV, 202, 34 pp.
- Reasenberg, P., (1985). Second-Order Moment of Central California Seismicity, 1969-1982. J. Geophys. Res., 90, 5479-5495.
- Rossi, C., (2014). La sequenza sismica del Montefeltro (maggioluglio 2011): lettura dei sismogrammi, localizzazione e meccanismi focali degli eventi più significativi. Tesi di Laurea triennale in Fisica Terrestre, Corso di laurea in Scienze Geologiche, 30 pp.
- Wessel, P. e W.H.F. Smith, (1991). Free software helps map and display data. Eos Trans. AGU, 72 (441), 445-446.
- Wiemer, S., (2001). A software package to analyze seismicity: ZMAP. Seismol. Res. Lett., 72, 373-382.

http://ring.gm.ingv.it

http://www.haisentitoilterremoto.it

Appendice A Stazioni della Rete Sismica Nazionale operative nel 2011

Sigla	Denominazione	Prov.	Regione	Lat.	Long.	т	veloc.	accel.	GPS	rete	aperte '11	chiuse '11
ABSI	Aberst.ckl (Sarntal)	(A)	Austria	46.7285	11.3205	1801	STS2-120s			AO		
ACER	Acerenza	ΡZ	Basilicata	40.7867	15.9427	069	Trillium-40s	Episensor	si	NGV		
АСОМ	Acomizza	ΠD	Friuli Venezia Giulia	46.5480	13.5137	1788	Trillium-40s			IN-SDO		
AGOR	Agordo	BL	Veneto	46.2829	12.0472	631	STS2-120s			IN-SDO		
AGST	Augusta	SR	Sicilia	37.2565	15.2271	70	Le3D-5s			NGV		
אנוא	Alia	PA	Sicilia	37.7490	13.7537	700	Trillium-40s			NGV		
AMUR	Altamura	BA	Puglia	40.9071	16.6041	443	Trillium-40s		si	NGV		
АОІ	Monte Conero	AN	Marche	43.5502	13.6020	530	Trillium-40s			INGV		
APPI	Appiano	ΒZ	Trentino Alto Adige	46.4787	11.2281	1056	Le3D-5s			NGV		
ΑQΤ1	Arquata del Tronto	AP	Marche	42.7738	13.2935	770	Le3D-1s			INGV	22/07/11	
AQU	L'Aquila	AQ	Abruzzo	42.3539	13.4019	729	STS2-120s	Episensor		MedNet		
ARCI	Arcidosso	GR	Toscana	42.8519	11.4754	1080	Trillium-40s	Episensor		INGV		
ARSA	Arzberg	(A)	Austria	47.2505	15.5232	577	STS2-120s			AO		
ARVD	Arcevia 2	AN	Marche	43.4981	12.9415	461	Trillium-40s			NGV		
ASOL	Asolo	ΤV	Veneto	45.8003	11.9023	181		Episensor		NGV	17/11/11	
ASQU	Asqua	AR	Toscana	43.7967	11.7893	860	Trillium-120s	Episensor		NGV		
ASSB	Assisi San Benedetto	PG	Umbria	43.0426	12.6587	734	Trillium-40s			INGV		
ATBU	Serra di Burano	PG	Umbria	43.4757	12.5483	1000	Le3D-5s		si	INGV		
ΑΤCΑ	Cantone	ЪG	Umbria	43.5659	12.2661	688	Trillium-40s			NGV		
ΑΤΟΟ	Casa Castalda	ЪG	Umbria	43.1851	12.6400	557	Le3D-5s			NGV		
ΑΤΕΟ	Monte Foce - Gubbio	PG	Umbria	43.3666	12.5715	960	Trillium-40s		si	INGV		
ΑΤΓΟ	Montelovesco	PG	Umbria	43.3152	12.4073	584	Le3D-5s	Episensor	si	INGV		
ATMC	Monte Cedrone	ЪG	Umbria	43.4469	12.1928	740	Le3D-5s			NGV		
ΑΤΜΙ	Monte Miggiano	PG	Umbria	43.3342	12.2680	581	Trillium-40s		si	NGV		
ATN	Antennamare	ME	Sicilia	38.1595	15.4647	1130	Le3D-20s			NGV	14/03/11	
ATPC	Poggio Castellaccio	PG	Umbria	43.4807	12.4570	810	Trillium-40s	Episensor		INGV		
ΑΤΡΙ	Pietralunga (Aviosuperficie)	ЪG	Umbria	43.4507	12.4022	694	Le3D-5s		si (PIET)	NGV		
АТТЕ	Monte Tezio	PG	Umbria	43.1979	12.3536	929	Trillium-40s		si	INGV		
ATVA	Monte Valcinella	ЪG	Umbria	43.2786	12.2853	605	Le3D-5s		si (VALC)	NGV		

ΑΤΛΟ	Monte Valentino	PG	Umbria	42.3821	12.4066	638	Trillium-40s		si (MVAL)	INGV		
BADI	Badiali	PE	Abruzzo	43.5097	12.2443	430	Le3D-5s			INGV		
BAG8	Bagolino	BS	Lombardia	45.8228	10.4664	807		Episensor		NGV		
BDI	Bagni di Lucca	ΓN	Toscana	44.0624	10.5970	830	Trillium-40s	Episensor		NGV		
BERNI	Berninapass	(CH)	Svizzera	46.4134	10.0231	2310	STS2-120s			ЕТН		
внв	Bricherasio	ТО	Piemonte	44.8352	7.2633	585	Trillium-40s			DI-VDNI		
BLLA	Bellaria	RN	Emilia Romagna	44.1429	12.4703	1	Le3D-1s			NGV		
ΒLΥ	Banja Luka	(BiH)	Bosnia- Herzegovina	44.7488	17.1839	256	STS2-120s	Episensor		MedNet		
BNALP	Bannalp	(CH)	Svizzera	46.8705	8.4250	1540	STS2-120s			ЕТН		
BNI	Bardonecchia	ТО	Piemonte	45.0528	6.6763	1407	STS2-120s	Episensor		MedNet		
BOB	Bobbio	РС	Emilia Romagna	44.7679	9.4478	910	Trillium-40s	Episensor		INGV		
BORM	Bormio	SO	Lombardia	46.4694	10.3764	1235		Episensor		INGV	15/09/11	
BOSI	Bozen-Zivilschutz Zentrale	ΒZ	Trentino Alto Adige	46.4952	11.3185	242	STS2-120s			INGV		
вотт	Botticino	BS	Lombardia	45.5494	10.3095	200		Episensor		INGV		
BRES	Bressanone	ΒZ	Trentino Alto Adige	46.6987	11.7341	2454	Le3D-5s			INGV		
BRIS	Brisighella	RA	Emilia Romagna	44.2245	11.7666	260	Trillium-120s	Episensor	si	INGV		
BRMO	Bormio	SO	Lombardia	46.4760	10.3731	1380	Trillium-40s			INGV		
BRSN	Barisano	FC	Emilia Romagna	44.2841	12.0769	20	S-13			INGV		01/04/11
BSSO	Busso	CB	Molise	41.5461	14.5938	1010	Trillium-40s	Episensor	si	INGV		
BULG	Camerota - Monte Bulgheria	SA	Campania	40.0783	15.3776	815	Trillium-40s	Episensor	si	INGV		
CADA	Capodarco	AP	Marche	43.1942	13.7614	148		Episensor		INGV		
CAFE	Carife	AV	Campania	41.0280	15.2366	1070	Trillium-40s	Episensor	si	INGV		
CAFI	Castiglion Fiorentino	AR	Toscana	43.3292	11.9663	547	Trillium-40s	Episensor	si	INGV		
CAFR	Castel Frentano	СН	Abruzzo	42.2273	14.3470	250	Trillium-40s	Episensor		INGV		
CAGR	Agira	EN	Sicilia	37.6220	14.4999	548	Trillium-40s			INGV		
CAMP	Campotosto	AQ	Abruzzo	42.5358	13.4090	1283	Trillium-120s			INGV		
CAPR	Capriolo	BS	Lombardia	45.6372	9.9345	215		Episensor		INGV		
CAR1	Carolei	CS	Calabria	39.2534	16.2114	680	Trillium-40s	Episensor	si	INGV		
CASP	Castiglione della Pescaia	GR	Toscana	42.7908	10.8652	390	Trillium-40s	Episensor	si	INGV		
CAVT	Castelvetrano 2	ТР	Sicilia	37.6788	12.7556	158	SS1-Ranger			INGV		

CDCA^	Città Di Castello	ЪС	Umbria	43.4584	12.2336	50	Le3D-1s	Episensor		INGV		
CDRU	Ottati - Civita Di Ruta	SA	Campania	40.4896	15.3046	1057	Trillium-40s	Episensor	si	INGV		
CEL	Celeste	RC	Calabria	38.2603	15.8939	702	STS2-120s	Episensor	si (CELL)	MedNet		
CELB	San Piero in Campo - Elba	П	Toscana	42.7466	10.2107	742	Trillium-40s			INGV	08/06/11	
CELI	Celico	CS	Calabria	39.4027	16.5088	1290	Trillium-120s	Episensor	si	INGV	24/10/11	
CERA	Filignano	IS	Molise	41.5978	14.0183	800	Trillium-40s	Episensor	si	INGV		
CERT	Cerreto Laziale	RM	Lazio	41.9490	12.9818	773	Trillium-120s		si	INGV		
CESI	Cesi - Serravalle di Chienti	MC	Marche	43.0049	12.9046	840	Trillium-40s		si	INGV		
CESX ^	Cesi	TR	Umbria	42.6100	12.5800	380	Trillium-240s			INGV		
CET2	Cetraro	cs	Calabria	39.5288	15.9546	675	Trillium-40s			INGV	01/12/11	
CGL	Punta Serpeddì	CA	Sardegna	39.3660	9.2960	1050	Le3D-5s			INGV	31/05/11	
CGRP	Cima Grappa	ΡN	Friuli Venezia Giulia	45.8807	11.8047	1757	STS2-120s	Episensor		OGS-NI		
CIGN	Sant'Elia a Pianisi	CB	Molise	41.6542	14.9050	350	Trillium-40s		si	INGV		
CIMA	Civitanova Marche	AN	Marche	43.3053	13.6701	163		Episensor		INGV		
CING	Cingoli	МС	Marche	43.3756	13.1954	626	Trillium-40s	Episensor		INGV		
CIRO	Champorcer	AO	Valle d'Aosta	45.6019	7.5682	2516	Trillium-40s			INGV-IG		
CLTB	Caltabellotta	AG	Sicilia	37.5786	13.2156	957	STS2-120s			MedNet		
СМРО	Campotto Po	FE	Emilia Romagna	44.5808	11.8056	2	Trillium-40s			INGV		
CMPR	Campora	SA	Campania	40.3181	15.3030	732	Trillium-40s	Episensor	si	INGV		
COR1	Corinaldo	AN	Marche	43.6318	13.0000	237	Le3D-1s			INGV	12/04/11	
CORL	Corleone	PA	Sicilia	37.8943	13.3038	660	Trillium-40s		si	INGV		
CPGN	Carpegna	PU	Marche	43.8011	12.3205	1400	Le3D-1s	Episensor		INGV		
CRAC	Craco	МΤ	Basilicata	40.3650	16.4350	384	Le3D-5s		si	INGV		
CRE	Caprese Michelangelo	AR	Toscana	43.6189	11.9517	1215	Trillium-40s			INGV		
CRJA	Costa Raja	ТР	Sicilia	37.8016	13.0043	560	SS1-Ranger			INGV		
CRM1	Castelraimondo	MC	Marche	43.2101	13.0580	302		SF3000		INGV	30/05/11	
CRMI	Carmignano	РО	Toscana	43.7900	10.9700	490	Trillium-40s	Episensor	si	INGV		
CRND	Cornuda	٦V	Veneto	45.8361	12.0131	159		Episensor		INGV	04/11/11	
CSNT	Castellina in Chianti	SI	Toscana	43.4731	11.2902	636	Trillium-40s			INGV		
CSP1	Cessapalombo	MC	Marche	43.0918	13.2048	1188	Le3D-1s			INGV	19/10/11	
CSSN	Cassano Irpino	AV	Campania	40.8609	15.0239	690	S-13			INGV		01/04/11

СТІ	Castello Tesino	TN	Trentino Alto Adige	46.0482	11.6497	1180	Trillium-120s			INGV		
CTL8	Castelleone	CR	Lombardia	45.2763	9.7622	60	Malin	Episensor		INGV		
cuc	Castrocucco	CS	Calabria	39.9938	15.8155	637	STS2-120s		si (CUCC)	MedNet		
DAVOX	Davos	(CH)	Svizzera	46.7806	9.8797	1830	STS2-120s			ETH		
DGI	Dorgali Grotta Ispinigoli	NU	Sardegna	40.3180	9.6067	354	Trillium-40s			INGV		
DIX	Grand Dixence	(CH)	Svizzera	46.0805	7.4040	2400	STS2-120s			ETH		
DOI	San Damiano Macra	CN	Piemonte	44.5042	7.2467	1039	Trillium-40s			INGV		
ECNV	Catenanuova	CT	Sicilia	37.5956	14.7125	484	Trillium-40s		si	INGV-CT		
ECTS	Castiglione di Sicilia	CT	Sicilia	37.8820	15.1210	681	Le3D-1s			INGV		
EL6	Elcito	MC	Marche	43.3293	13.1017	978	Le3D-1s			INGV	18/10/11	
EMV	Vieux Emosson	(CH)	Svizzera	46.0632	6.8989	2210	STS2-120s			ETH		
ENR	Entracque	CN	Piemonte	44.2267	7.4203	1040	Trillium-40s			INGV-IG	17/05/11	
ERBM	Eremo di Bismantova	RE	Emilia Romagna	44.4195	10.4127	933	Le3D-5s			INGV		
ESLN	Serra La Nave	CT	Sicilia	37.6934	14.9744	1787	Trillium-40s		si	INGV		
FAEN	Faenza	RA	Emilia Romagna	44.2895	11.8770	41	KS-2000			INGV		
FAGN	Fagnano	AQ	Abruzzo	42.2657	13.5838	761	Trillium-40s			INGV		
FAVR	Favara 2	AG	Sicilia	37.2671	13.6669	258	Trillium-40s			INGV		
FDMO	Fiordimonte	MC	Marche	43.0365	13.0873	550	Trillium-240s			INGV		
FIAM	Fiamignano	RI	Lazio	42.2680	13.1172	1070	Trillium-120s	Episensor		INGV		
FINB	Finale Ligure	SV	Liguria	44.1775	8.3253	85	Trillium-40s			INGV		
FIR	Firenze	FI	Toscana	43.7744	11.2551	40	Trillium-240s	Episensor		INGV		
FIU	Minerbio - Fondo Fiumicello	BO	Emilia Romagna	44.6403	11.4917	12	Le3D-5s			INGV		
FIU1	Fiuminata	MC	Marche	43.1886	12.9316	479		SF3000		INGV	14/03/11	
FIVI^	Fivizzano	MS	Toscana	44.2393	10.1273	380		Episensor		INGV-IG		
FNVD	Fontana Vidola	BO	Emilia Romagna	44.1678	11.1229	950	Trillium-40s	Episensor		INGV		
FOSV	Fossato di Vico	PG	Umbria	43.2948	12.7612	559	Le3D-5s			INGV	02/08/11	
FRE8	Fregona	TV	Veneto	46.0150	12.3552	543		Episensor		INGV	31/03/11	
FRES	Fresagrandinaria	CH	Abruzzo	41.9735	14.6693	414	Trillium-40s		si	INGV		
FRON	Frontone	PU	Marche	43.5178	12.7257	515	Le3D-5s			INGV		
FROS	Frosini	SI	Toscana	43.2097	11.1562	432	Trillium-40s			INGV		
FSSB	Fossombrone	PS	Marche	43.6931	12.7771	523	Trillium-40s			INGV		

FUORN	Ofenpass	(CH)	Svizzera	46.6202	10.2635	2335	STS2-120s			ETH		
FUSIO	Fusio	(CH)	Svizzera	46.4549	8.6631	1480	STS2-120s			ETH		
FVI	Forni Avoltri	UD	Friuli Venezia Giulia	46.5966	12.7804	1024	CMG40-30s			INGV		
GAG1	Gagliole	MC	Marche	43.2381	13.0674	484		SF3000		INGV	15/03/11	
GALF	Gagliano Castelferrato	EN	Sicilia	37.7107	14.5665	740	Trillium-40s		Si	INGV		
GATE	Gambatesa	CB	Molise	41.5131	14.9102	487	Trillium-40s	Episensor	Si	INGV		
SOBD	Grotte Bossea	CN	Piemonte	44.2416	7.8399	897	Trillium-240s			INGV-IG	04/11/11	
GEPF	Gemona - Piazza del Ferro	UD	Friuli Venezia Giulia	46.2750	13.1386	12	CMG40-30s			INGV-RF		
GIB	Gibilmanna	PA	Sicilia	37.9903	14.0262	1005	Trillium-120s		Si	INGV		
GIMEL	St Georges-Gimel	(CH)	Svizzera	46.5347	6.2658	1130	STS2-120s			ETH		
GIO	Monte San Gregorio	CT	Sicilia	37.5667	15.1083	200	L4-C-3D			INGV		
GIUL	Giuliano Di Roma	FR	Lazio	41.5583	13.2546	566	Trillium-40s			INGV		
GMB	Gambarie	RC	Calabria	38.1681	15.8289	1300	Le3D-20s			INGV		
GRFL	Gerfalco	GR	Toscana	43.1472	10.9755	750	S-13			INGV		01/04/11
GRI	Girifalco	CZ	Calabria	38.8221	16.4200	510	L4-C-3D			INGV		
GROG	Isola di Gorgona	LI	Toscana	43.4262	9.8920	118	Trillium-40s	Episensor	si	INGV		
GSCL	Gusciola	МО	Emilia Romagna	44.3505	10.5881	674	S-13			INGV		01/04/11
GUAR	Guarcino	FR	Lazio	41.7945	13.3123	741	Trillium-40s		si	INGV		
GUMA	Gualdo di Macerata	MC	Marche	43.0627	13.3352	574	Trillium-120s		si	INGV		
HAGA	Brucoli	CT	Sicilia	37.2850	15.1550	126	Trillium-40s		si	INGV-CT		
HAVL	Avola	SR	Sicilia	36.9596	15.1220	502	Trillium-40s		si	INGV		
HCRL	Carlentini	SR	Sicilia	37.2831	15.0325	240	Trillium-40s		si	INGV		
HLNI	Lentini - Masseria Cucco	SR	Sicilia	37.3485	14.8720	146	Trillium-40s		si	INGV		
НМРС	Modica	RG	Sicilia	36.9590	14.7831	595	Trillium-40s		si	INGV		
HVZN	Vizzini	СТ	Sicilia	37.1783	14.7155	787	Trillium-40s		si	INGV		
IACL	Alicudi	RC	Calabria	38.5330	14.3550	145	Trillium-40s		si	INGV-CT		
IFIL	Filicudi	ME	Sicilia	38.5642	14.5753	277	Le3D-1s		si	INGV		
ILLI	Lipari	ME	Sicilia	38.4457	14.9483	283	Trillium-40s		si (LOSV)	INGV		
IMI	Imperia	MI	Liguria	43.9105	7.8932	840	Trillium-40s			INGV		
IMOL	Imola	ВО	Emilia Romagna	44.3596	11.7425	27	Le3D-1s	Episensor		INGV		
INTR	Introdacqua	AQ	Abruzzo	42.0115	13.9046	924	Trillium-40s	Episensor		INGV		

TCTD	Ginoetra	Ц	Cirilia	38 7866	15 1018	103	Trillium_40c			TNGV	21/06/11	
VICT	01110201 B	ЧГ	JILIIA	000/.00	OTETICT	COT					TT /00 /47	
IVPL	Vulcano Piano	ME	Sicilia	38.3763	14.9801	486	Trillium-40s		si (VCSP)	INGV		
JOPP	Joppolo	٨٨	Calabria	38.6068	15.8856	500	Trillium-40s	Episensor	Si	NGV		
KEK	Kerkira	(GR)	Grecia	39.7130	19.7987	280	STS2-120s			HL-NOA		
KOSI	Kohlern-Titschen	ΒZ	Trentino Alto Adige	46.4630	11.3778	1604	STS2-120s			INGV		
LADO	San Nicola dell'Alto	KR	Calabria	39.2840	16.9795	488	Le3D-5s			INGV-CL		
LATE	Latera	VT	Lazio	42.6137	11.8040	610	Trillium-40s	Episensor		INGV		
LAV9	Lanuvio	RM	Lazio	41.6778	12.6989	300	Trillium-40s	Episensor		INGV		
LNSS	Leonessa	RI	Lazio	42.6029	13.0403	1155	Trillium-40s		Si	NGV		
LPEL	Lama dei Peligni	CH	Abruzzo	42.0468	14.1832	760	Trillium-40s		si	INGV		
LSD	Lago Serrù - Ceresole Reale	то	Piemonte	45.4595	7.1343	2285	Trillium-40s	Episensor		INGV-IG		
LTRZ	Laterza	TA	Puglia	40.6033	16.8191	381	Le3D-5s			INGV		
MA9	Marino	RM	Lazio	41.7702	12.6593	340	Trillium-240s			INGV		
MABI	Malga Bissina	TN	Trentino Alto Adige	46.0549	10.5140	1853	Trillium-40s			INGV		
MAGA	Magasa	BS	Lombardia	45.7753	10.6286	1265	Trillium-40s		si	INGV		
MAIM	Mastiano	LU	Toscana	43.9142	10.4915	200	Trillium-40s			INGV-IG		
MAON	Monte Argentario	GR	Toscana	42.4283	11.1309	237	Trillium-40s	Episensor	si	INGV		
MATE	Matera	МΤ	Basilicata	40.6491	16.7044	494	STS2-120s			GEOFON		
MCEL	Tramutola - Monticello	ΡZ	Basilicata	40.3249	15.8019	960	Trillium-40s	Episensor	si	INGV		
MCIV	Monte Civitella	GR	Toscana	42.7786	11.6765	790	Trillium-40s			INGV		
MCRV	Calabritto - Monte Cervialto	AV	Campania	40.7826	15.1684	1191	Trillium-40s	Episensor	si	INGV		
MCSR	Castroreale	ME	Sicilia	38.0646	15.2301	1064	Trillium-40s		si	INGV		
МСТ	Montecammarata	AG	Sicilia	37.6186	13.6076	1558	Le3D-20s			INGV		
MDI	Monte di Nese	BG	Lombardia	45.7697	9.7160	954	Trillium-40s	Episensor		INGV		
MELA	Melanico-S. Croce di Magliano	CB	Molise	41.7059	15.1270	115	Trillium-40s	Episensor	Si	NGV		
MESG	Mesagne	BR	Puglia	42.5894	17.8504	78	Trillium-40s			INGV		
MEU	Monte Lauro	SR	Sicilia	37.1111	14.8300	986	L4-C-3D			INGV		
MFNL	Monte Finestrelle	ТР	Sicilia	37.7908	12.9224	677	SS1-Ranger			INGV		
MGAB	Montegabbione	TR	Umbria	42.9126	12.1121	547	Trillium-40s	Episensor	si	INGV		
MGR	Morigerati	SA	Campania	40.1376	15.5535	288	Trillium-40s	Episensor		INGV		
MIDA	Miranda	IS	Molise	41.6419	14.2540	950	Trillium-40s	Episensor		INGV		

MIGL	Miglionico	ΜТ	Basilicata	40.6044	16.4410	440	Trillium-40s	Episensor	si (SVTO)	NGV		
MILZ	Milazzo Faro	ME	Sicilia	38.2713	15.2313	0	Trillium-40s		si (MILA)	NGV		
ODMM	Monte Magaggiaro	AG	Sicilia	37.6620	12.9767	397	SS1-Ranger			NGV		
MMK	Mattmark	(CH)	Svizzera	46.0517	7.9650	2200	STS2-120s			ЕТН		
MMME	Mongiuffi-Melia	ME	Sicilia	37.9352	15.2539	959	Trillium-40s		si	NGV		
NMM	Mormanno	SC	Calabria	39.8910	15.9904	921	Trillium-40s			NGV		
ONM	Monte Soro	ME	Sicilia	37.9310	14.6950	1830	Le3D-5s			INGV		
MNOV	Novara di Sicilia	ME	Sicilia	38.0286	15.1356	835	Trillium-40s		Si	NGV		
MNS	Montasola	RI	Lazio	42.3855	12.6811	706	Trillium-40s	Episensor		INGV		
мосо	Biccari - Mt. Cornacchia	ЪĜ	Puglia	41.3700	15.1580	1049	Trillium-40s	Episensor	si	INGV		
MODE	Modena - Università	ОМ	Emilia Romagna	44.6297	10.9492	41		Episensor	Si	NGV		
MODR	Mondragone	CE	Campania	41.1459	13.8779	345	Trillium-40s	Episensor	si	NGV		
MOMA	Monte Martano	PU	Marche	42.8010	12.5682	1040	Trillium-40s	Episensor		NGV	08/08/11	
MONC	Moncucco Torinese	АТ	Piemonte	45.0739	7.9271	480	Trillium-40s	Episensor	si	NGV		
NOSI	Gro.montoni-Vinschgau	ΒZ	Trentino Alto Adige	46.6164	10.5495	1957	STS2-120s			NGV		
MPAG	Monte Paganuccio	PU	Marche	43.6292	12.7595	930	Le3D-5s	Episensor		INGV		
MPAZ	Palizzi	RC	Calabria	37.9531	16.0067	496	Trillium-40s		si	NGV		
MPG	Monte Pellegrino	PA	Sicilia	38.1617	13.3600	600	Le3D-5s			INGV		
MPNC	San Pier Niceto	ME	Sicilia	38.1465	15.3528	479	Trillium-40s		si	NGV		
MRB1	Apice - Monte Rocchetta	BN	Campania	41.1227	14.9682	688	Trillium-40s	Episensor		NGV		
MRGE	Morge	AO	Valle d'Aosta	45.7698	7.0610	1660	Trillium-40s	Episensor	si	INGV		
MRLC	Muro Lucano	ΡZ	Basilicata	40.7564	15.4889	605	Trillium-40s	Episensor	si	INGV		
MRVN	Minervino Murge	BA	Puglia	41.0609	16.1958	610	Trillium-40s	Episensor	si	NGV		
MSAG	Monte Sant'Angelo	FG	Puglia	41.7120	15.9096	890	Trillium-40s	Episensor	si	INGV		
MSC	Monte Massico	CE	Campania	41.1915	13.9713	109	S-13			NO-VDNI		
MSCL	Scilla	RC	Calabria	38.2320	15.7900	893	Le3D-20s			INGV-CT		
MSFR	San Fratello	ME	Sicilia	38.0339	14.5916	723	Trillium-40s			INGV-CT	02/02/11	
MSRU	Poggio Scudearu	ME	Sicilia	38.2639	15.5083	408	Trillium-40s		si	INGV		
MSSA	Maissana	SP	Liguria	44.3163	9.5174	930	Trillium-240s			INGV-IG		
MTCE	Montecelio	RM	Lazio	42.0228	12.7422	388	Trillium-40s			INGV		
MTGR	Montagna Grande	ТР	Sicilia	37.8934	12.7593	751	SS1-Ranger			INGV		

MTI 1	Matelica	υ	Marcho	43 2567	13 0096	353		SERNON		TNGV	05/04/11	
											++ /- 0 /00	
MTRZ	Monterenzio	BO	Emilia Romagna	44.3128	11.4248	570	Trillium-40s	Episensor	si	INGV		
MTSN	Montesano sulla Marcellana	SA	Campania	40.2663	15.7515	1056	Trillium-40s	Episensor	si	INGV		
MTTG	Motta San Giovanni	RC	Calabria	38.0031	15.6999	484	Trillium-40s		si	INGV		
MUCR	Ucria	ΒE	Sicilia	38.0430	14.8739	1042	Trillium-40s			INGV	13/04/11	
MUGIO	Muggio	(CH)	Svizzera	45.9219	9.0417	830	STS2-120s			ETH		
MURB	Monte Urbino	ЪG	Umbria	43.2630	12.5246	845	Trillium-40s	Episensor	si	INGV		
NARO	Abbazia di Naro	PU	Marche	43.6108	12.5806	272	Trillium-40s			INGV	17/01/11	
NEGI	Perinaldo	MI	Liguria	43.8462	7.7027	734	CMG40-60s			INGV-IG		
NL9	Nola	AN	Campania	40.9205	14.5450	75	S-13			INGV-OV		
NOCI	Noci	BA	Puglia	40.7888	17.0644	420	Trillium-40s	Episensor	si	INGV		
NOVE	Novellara	RE	Emilia Romagna	44.7982	10.7161	16	Le3D-5s			INGV		
NRCA	Norcia	PG	Umbria	42.8336	13.1143	927	Trillium-40s	Episensor		INGV		
009	Casamicciola	NA	Campania	40.7458	13.9008	123	S-13			INGV-OV		
OFFI	Offida	AP	Marche	42.9350	13.6857	320	Trillium-40s			INGV		
ORI	Oriolo Calabro	CS	Calabria	40.0510	16.4504	375	Trillium-40s			INGV		
ORZI	Orzinuovi	BS	Lombardia	45.4056	9.9307	83		Episensor		INGV		
OSKI	Oschiri	SS	Sardegna	40.8210	9.1083	896	Trillium-40s			INGV		
OSSC	Oss. Polifunz. del Chianti (OPC)	FI	Toscana	43.5236	11.2458	452	Trillium-120s	Episensor		INGV	14/07/11	
PALA	Cima Pala	PN	Friuli Venezia Giulia	46.2450	12.9240	1280	STS2-120s			IN-SDO		
PALZ	Palazzo San Gervasio	ΡZ	Basilicata	40.9441	15.9602	450	Trillium-40s	Episensor	si	INGV		
PAOL	Paolisi	BN	Campania	41.0312	14.5675	715	Trillium-120s	Episensor	si	INGV		
PARC	Parchiule - Borgo Pace	PU	Marche	43.6486	12.2386	580	Trillium-40s			INGV		
РСР	Pian Castagno - Ponzone	AL	Piemonte	44.5413	8.5452	770	Trillium-40s			INGV-IG		
PDG	Podgorica	(MNE)	Montenegro	42.4297	19.2608	40	STS2-120s	Episensor		MEdNet		
PE3	Peglio	PU	Marche	43.6960	12.4963	530	S-13			INGV	12/12/11	
PE9	Pescosannita	BN	Campania	41.2333	14.8333	395	S-13			INGV-OV		
PESA	Pesaro	PS	Marche	43.9411	12.8402	221	Trillium-40s		si (PESA - >PESR)	NGV		
PIEI	Pieia	PS	Marche	43.5357	12.5350	665	Trillium-40s			INGV		
PIGN	Pignataro Maggiore	CE	Campania	41.2000	14.1799	398	Trillium-120s	Episensor		INGV	25/10/11	

IId	Pisa Certosa	Γ	Toscana	43.7219	10.5250	66	S-13		si	INGV		01/04/11
PI01	Pioraco	MC	Marche	43.1782	12.9838	460		SF3000		INGV	23/03/11	
PIPA	Pietrapaola	CS	Calabria	39.4851	16.8158	479	Trillium-120s	Episensor	si	INGV		
PLAC	Placanica	RC	Calabria	38.4494	16.4383	602	Trillium-40s	Episensor	si	INGV		
PLLN	Pollina	ЪА	Sicilia	37.9926	14.1431	787	Le3D-5s			NGV		
PLMA	Palmaria - Porto Venere	SP	Liguria	44.0498	9.8537	22	Trillium-240s		si (LASP)	INGV		
PLONS	Plons	(CH)	Svizzera	47.0492	9.3807	1068	STS2-120s			ЕТН		
POFI	Posta Fibreno	FR	Lazio	41.7174	13.7120	878	Trillium-40s	Episensor	Si	NGV		
POLC	Polcenigo	Nd	Friuli Venezia Giulia	46.0266	12.5005	150	CMG40-30s			IN-SDO		
MdOd	Popiglio	РТ	Toscana	44.0045	10.7570	440	CMG40-60s			INGV-IG		
POZ	Pozzuoli	NA	Campania	40.8203	14.1205	e	L4-C-3D			NO-VDNI		
PRMA	Parma Università	РК	Emilia Romagna	44.7637	10.3131	78	Trillium-120s		si (PARM)	NGV		
PSB1	Pesco Sannita	BN	Campania	41.2235	14.8108	551	Trillium-40s	Episensor	Si	NGV		
PTCC	Patocco	UD	Friuli Venezia Giulia	46.4075	13.3540	700	Trillium-40s			INGV		
PTF	Montebello (Guzzano)	РО	Toscana	43.9603	11.0693	533	S-13			INGV	28/03/11	
PTMD	Pantelleria - Kuddia Mida	ТР	Sicilia	36.7885	11.9934	626	Trillium-40s		si (PZIN)	INGV		
PTQR	Pietraquaria	AQ	Abruzzo	42.0219	13.4005	957	Trillium-120s			INGV		
PTRJ	Pietraroja	BN	Campania	41.3641	14.5290	1027	Trillium-240s	Episensor	si	INGV		
PTRP	Pietrapertosa	ΡZ	Basilicata	40.5215	16.0612	1077	Le3D-5s		si	INGV		
PZUN	Potenza Università	ΡZ	Basilicata	40.6458	15.8070	820	STS2-120s	Episensor		MEdNet-BA		
PZZ	Prazzo-Stroppo	CN	Piemonte	44.5068	7.1160	1430	Trillium-40s			DI-VBNI		
PZZT	Monte Pizzetto	BO	Emilia Romagna	44.1313	10.8617	1236	Trillium-40s			INGV		
QLNO	Quiliano	SV	Liguria	44.3243	8.3459	547	Trillium-40s			INGV		
RAFF	Raffo Rosso	СТ	Sicilia	37.2225	14.3624	310	Trillium-40s		si	INGV		
RAVA	Ravarino	МО	Emilia Romagna	44.7559	11.1188	15	Le3D-5s			INGV		
RDP	Rocca Di Papa	RM	Lazio	41.7583	12.7167	760	Trillium-40s		si (RDPI)	INGV		
REMY	Saint Rhemy en Bosses	AO	Valle d'Aosta	45.8378	7.1565	2448	Trillium-40s			INGV	04/10/11	
RESU	Resuttano	CL	Sicilia	37.6468	14.0568	785	Trillium-40s		si	INGV		
RISI	Rein in Taufers-Ahrntal	(A)	Austria	46.9480	12.0787	1785	STS2-120s			AO		
RM29	Verrico (Montereale)	AQ	Abruzzo	42.5606	13.2023	1276	Trillium-120s	Episensor		INGV		
RM32	Poggio Cancelli	RI	Lazio	42.5702	13.2932	1362	Le3D-1s	Episensor		INGV		

RM33	Pellescritta - Montereale	AQ	Abruzzo	42.5090	13.2145	1097	Le3D-5s	Episensor		INGV		
RMP	Roma Monte Porzio	RM	Lazio	41.8111	12.7022	380	Trillium-120s		si (RMPO)	INGV		
RN12	Rionero Sannitico	IS	Molise	41.7033	14.1524	950	Trillium-40s	Episensor	S	NGV		
ROM9	ROMA (Sede INGV)	RM	Lazio	41.8284	12.5155	110	Trillium-120s	Episensor		INGV		
RORO	Rocca Rossa	SV	Liguria	44.1122	8.0662	260	CMG-3T- 100s			INGV-IG		
ROSI	Ro.kopf-Sterzing	ΒZ	Trentino Alto Adige	46.9281	11.4118	1917	STS2-120s			NGV		
ROTM	Rocchetta Tanaro	AT	Piemonte	44.8493	8.3527	221	Trillium-40s			INGV-IG	12/02/11	
ROVR	Roverè Veronese	VR	Veneto	45.6468	11.0721	1316	Trillium-120s	Episensor	Si	INGV		
RRL	Cesana Torinese	ТО	Piemonte	44.9208	6.7908	2130	Trillium-40s			DI-VDNI		
RSM	Repubblica di San Marino	RSM	Rep. San Marino	43.9303	12.4497	645	Trillium-120s		si (RSMN)	INGV		05/05/11
RSP	Reno Superiore	ТО	Piemonte	45.1482	7.2653	1285	Trillium-40s	Episensor	si (RSPX)	INGV-IG		
SABO	Monte Sabotino	GO	Friuli Venezia Giulia	45.9875	13.6336	621	STS2-120s			IN-SDO		
SACR	S. Croce del Sannio	BN	Campania	41.3974	14.7057	859	Trillium-40s	Episensor	Si	INGV		
SACS	S. Casciano dei Bagni	SI	Toscana	42.8491	11.9097	845	Trillium-120s	Episensor	si	INGV		
SALB	San Lorenzo Bellizzi	CS	Calabria	39.8772	16.3460	1188	Trillium-40s	Episensor	Si	INGV		
SALO	Salò	BS	Lombardia	45.6183	10.5243	600	Trillium-120s	Episensor	si	INGV		
SAMA	S.Maria delle Mole (Ciampino)	RM	Lazio	41.7805	12.5923	119	Trillium-40s			INGV		
SASS	Sassa	Id	Toscana	43.2581	10.6898	438	Trillium-40s			INGV		
SATI	Passo Salati	AO	Valle d'Aosta	45.8753	7.8685	3005	Trillium-40s			INGV-IG		
SBPO	S. Benedetto Po	MM	Lombardia	45.0511	10.9199	10	Trillium-40s		Si	INGV		
SC2M	Scurtabò	SP	Liguria	44.4043	9.5343	664	Trillium-40s			INGV-IG		
SCHR	S. Chirico Raparo	ΡZ	Basilicata	40.1992	16.0759	968	Le3D-5s		si	INGV		
SCTE	Santa Cesarea Terme	LE	Puglia	40.0724	18.4675	150	Trillium-120s	Episensor	si	INGV		
SDI	San Donato Val Comino	FR	Lazio	41.7100	13.8107	698	S-13			INGV		01/04/11
SEF1	Sefro	MC	Marche	43.1468	12.9476	518		SF3000		INGV	07/11/11	
SEI	Sant'Agata	FI	Toscana	44.0543	11.3586	610	S-13			INGV		
SENI	Senigallia	AN	Marche	43.7052	13.2331	10	Le3D-1s	Episensor		INGV		
SERS	Sersale	CZ	Calabria	39.0359	16.6886	1221	Trillium-40s	Episensor	si	INGV		
SFI	Santa Sofia	FO	Puglia	43.9048	11.8470	548	Le3D-5s	Episensor		INGV		
SGG	S.Gregorio Matese	CE	Campania	41.3867	14.3792	880	Trillium-40s	Episensor		INGV-OV		

SGRT	San Giovanni Rotondo	FG	Puglia	41.7546	15.7437	960	Trillium-40s	Episensor	si	INGV		
SGTA	Sant'Agata di Puglia	FG	Puglia	41.1350	15.3650	890	Trillium-40s	Episensor	si	INGV		
SIRI	Monte Sirino - Moliterno	ΡZ	Basilicata	40.1821	15.8675	1063	Trillium-40s	Episensor	si	INGV		
SLCN	Sala Consilina	SA	Campania	40.3900	15.6328	986	Trillium-40s	Episensor	si	NGV		
SMA1	San Martino	RI	Lazio	42.6305	13.3353	1150	Le3D-5s			INGV		
SN1#	Capo Mulini Mare	СТ	Sicilia	37.5476	15.3975	- 2065	CMG1T-360s			INGV-CT		
SNAL	S. Angelo dei Lombardi	AV	Campania	40.9254	15.2091	874	Trillium-40s	Episensor	si	INGV		
SNTG	Esanatoglia	MC	Marche	43.2550	12.9406	650	Trillium-120s	Episensor		INGV		
IOS	Samo	RC	Calabria	38.0732	16.0542	305	Le3D-5s			NGV		
SOLUN	Solunto	PA	Sicilia	38.0919	13.5326	190	Trillium-120s			NGV		
SOR	Termini di Sorrento	NA	Campania	40.5820	14.3350	497	Trillium-40s			INGV-OV		
SSFR	Montelago di Sassoferrato	AN	Marche	43.4363	12.7823	750	Trillium-40s			NGV		
SSM 1	San Severino Marche	MC	Marche	43.2288	13.1770	240		SF3000		INGV	30/05/11	
SSP9	Sansepolcro	AR	Toscana	43.5739	12.1314	324	Le3D-1s			INGV		
SSY	Sortino	SR	Sicilia	37.1577	15.0737	600	Trillium-40s		si (SSYX)	NGV		
STAL	Staligial	PD	Friuli Venezia Giulia	46.2601	12.7104	625	Trillium-120s	Episensor		INGV		
STR3	Stromboli 3	ME	Sicilia	38.7978	15.2305	195	CMG40-60s			INGV-OV		
STR4	Stromboli 4	ME	Sicilia	38.7739	15.2115	86	CMG40-60s		si (SVIN)	INGV-OV		
STR5	Stromboli 5	ME	Sicilia	38.7911	15.2032	632	CMG40-60s			INGV-OV		
STV	Sant'Anna di Valdieri	CN	Piemonte	44.2455	7.3260	930	Trillium-240s			NGV		
T0104	Coppito - Madonna delle Grazie	AQ	Abruzzo	42.3593	13.3395	741	Trillium-120s	Episensor		NGV		
T0106	Roio Piano	AQ	Abruzzo	42.3069	13.3837	1260	Le3D-1s		si (ROPI)	INGV		25/02/11
TDS	Terranova da Sibari	CS	Calabria	39.6601	16.3376	244	S-13			NGV		01/04/11
TEOL	Teolo	PD	Veneto	45.3617	11.6739	370	Trillium-120s		Si	NGV		
TERO	Teramo	TE	Abruzzo	42.6228	13.6039	673	Trillium-40s	Episensor		NGV		
TIP	Timpagrande	KR	Calabria	39.1794	16.7583	789	STS2-120s	Episensor		MedNet		
TIR	Tirana	(AL)	Albania	41.3472	19.8631	247	STS2-120s		si (TIRA)	MedNet		
TOLF	Tolfa	RM	Lazio	42.0641	12.0002	371	Trillium-40s	Episensor	si	INGV		
TR9	Trevico	AV	Campania	41.0458	15.2320	1094	L4-C-3D			INGV-OV		
TRAV	Traversella	ТО	Piemonte	45.5127	7.7470	990	Trillium-40s			INGV-IG		

TRE1	Treia	MC	Marche	43.3112	13.3128	330		SF3000		INGV	28/03/11	
TREG	Tregnago	VR	Veneto	45.5230	11.1606	342		Episensor		INGV	07/09/11	
TRI	Trieste	TS	Friuli Venezia Giulia	45.7088	13.7642	161	Trillium-40s	Episensor		NGV		
TRIF	Trifonti	GR	Toscana	43.1148	10.9027	596	Trillium-40s			INGV		
TRIV	Trivento	CB	Molise	41.7666	14.5502	598	Trillium-40s	Episensor	si	INGV		
TRTR	Tortoreto Alta	TE	Abruzzo	42.8081	13.9138	160	Trillium-40s	Episensor		NGV		
TUE	Stuetta	SO	Lombardia	46.4722	9.3473	1924	STS2-120s		si (STUE)	MedNet		
ISN	Ustica	PA	Sicilia	38.7079	13.1791	285	Trillium-40s		si (USIX)	NGV		
VAGA	Valle Agricola	CE	Campania	41.4154	14.2342	795	Trillium-40s	Episensor	si	NGV		
VARE	Varese	VA	Lombardia	45.8677	8.7700	1219	Trillium-40s			NGV		
VCEL	Villa Celiera	PE	Abruzzo	42.3946	13.8406	1185	Le3D-5s			NGV		
VENT	Ventotene	ГТ	Lazio	40.7948	13.4216	108	Le3D-5s		si	NGV		
VINO	Villanova	UD	Friuli Venezia Giulia	46.2538	13.2755	608	CMG-3T- 100s			IN-SDO		
VLC	Villa Colle Mandina	ΓN	Toscana	44.1591	10.3862	562	STS2-120s	Episensor		MedNet		
NMG	Villore del Mugello	FI	Toscana	43.9617	11.5438	450	S-13			NGV		
VOBA	Vobarno	BS	Lombardia	45.6429	10.5040	292		Episensor		NGV	08/04/11	
VSL	Villasalto	CA	Sardegna	39.4960	9.3780	370	STS1-VBB			MedNet		
νυιτ	Monte Vulture-Melfi	ΡZ	Basilicata	40.9549	15.6163	1101	Trillium-40s	Episensor	si	NGV		
	Villavallelonga	AQ	Abruzzo	41.8697	13.6232	1051	Trillium-40s		si (VVLO)	INGV		
WDD	Wield Dalam	(M)	Isola di Malta	35.8373	14.5242	44	STS2-120s		si (MALT)	MedNet		
WTTA	Wattenberg	(A)	Austria	47.2637	11.6363	1764	STS2-120s			AO		
ZCCA	Zocca	МО	Emilia Romagna	44.3509	10.9765	700	Trillium-40s			NGV		
ZEN8	San Zeno di Montagna	VR	Veneto	45.6378	10.7319	596		Episensor		INGV		
ZOVE	Zovencedo	VI	Veneto	45.4536	11.4876	376		Episensor		INGV	07/09/11	

			ST/	AZIONI TE	MPORAN	EE 20	1					
Sigla	Denominazione	Prov.	Regione	Lat.	Long.	н	veloc.	accel.	GPS	rete	aperte '11	chiuse '11
T0501	Spinello di Santa Sofia	FC	Emilia Romagna	43.9472	12.0102	667	Reftek 130s	Episensor		INGV	25/05/11	29/09/11
T0502	San Martino - Sarsina	FC	Emilia Romagna	43.9006	12.1371	467	Reftek 130s	Episensor		INGV	25/05/11	29/09/11
T0503	Badia Tedalda	AR	Toscana	43.7399	12.1008	865	Reftek 130s	Episensor		INGV	25/05/11	29/09/11
T0711	San Lorenzo - Rotonda	ΡZ	Basilicata	39,9357	16.0618	751	Le3D-5s	Episensor		INGV	26/11/11	
T0712	Santa Domenica di Talao	cs	Calabria	39.8205	15.8519	248	Le3D-5s	Episensor		INGV	29/11/11	
T0713	Castelluccio Superiore	ΡZ	Basilicata	40.0085	15.9760	667	Le3D-5s			INGV	27/11/11	
T0714	Laino Borgo	cs	Calabria	39.9499	15.9681	303	Le3D-5s			INGV	26/11/11	
T0715	Morano Calabro	cs	Calabria	39.8384	16.0683	1044	Le3D-Lite	Episensor		INGV	18/12/11	
T0716	Piano Incoronata-Rotonda	ΡZ	Basilicata	39.9487	16.0224	560	Le3D-5s	Episensor		INGV	22/03/11	
PR01	Verghereto	FC	Emilia Romagna	43.8481	12.0606	627	CMG40T-30s			INGV	25/05/11	30/09/11

Indice

1. La Rete Sismica Nazionale nel 2011	4
2. La sismicità italiana nel 2011	7
 3. Sequenze sismiche del 2011 3.1 Criteri di selezione 3.2 Principali sequenze sismiche nel 2011 3.2.1 Alpi sud-orientali 3.2.2 Appennino settentrionale 3.2.3 Appennino centrale 3.2.4 Appennino centro-meridionale 3.2.5 Arco calabro e Sicilia 3.3 Sismicità diffusa 3.4 Cluster significativi 	10 12 14 14 14 18 18 20 23 24
4. Esplosioni in cava e attività antropica	25
5. Frane	28
6. Sintesi della sismicità analizzata nel 2011	31
7. Qualità delle localizzazioni	31
Analisti del BSI per l'anno 2011	33
Ringraziamenti - Acknowledgments	33
Bibliografia	33
ALLEGATO A: Stazioni della Rete Sismica Nazionale operative nel 2011	35

Quaderni di Geofisica

http://istituto.ingv.it/l-ingv/produzione-scientifica/quaderni-di-geofisica/

I Quaderni di Geofisica coprono tutti i campi disciplinari sviluppati all'interno dell'INGV, dando particolare risalto alla pubblicazione di dati, misure, osservazioni e loro elaborazioni anche preliminari, che per tipologia e dettaglio necessitano di una rapida diffusione nella comunità scientifica nazionale ed internazionale. La pubblicazione on-line fornisce accesso immediato a tutti i possibili utenti. L'Editorial Board multidisciplinare garantisce i requisiti di qualità per la pubblicazione dei contributi.

ISSN 2039-7941

Lapporti tecnici

http://istituto.ingv.it/l-ingv/produzione-scientifica/rapporti-tecnici-ingv/

I Rapporti Tecnici INGV pubblicano contributi, sia in italiano che in inglese, di tipo tecnologico e di rilevante interesse tecnico-scientifico per gli ambiti disciplinari propri dell'INGV. La collana Rapporti Tecnici INGV pubblica esclusivamente on-line per garantire agli autori rapidità di diffusione e agli utenti accesso immediato ai dati pubblicati. L'Editorial Board multidisciplinare garantisce i requisiti di qualità per la pubblicazione dei contributi.

ISSN 2039-6651

Miscellanea **INGV**

http://istituto.ingv.it/l-ingv/produzione-scientifica/miscellanea-ingv/

La collana Miscellanea INGV nasce con l'intento di favorire la pubblicazione di contributi scientifici riguardanti le attività svolte dall'INGV (sismologia, vulcanologia, geologia, geomagnetismo, geochimica, aeronomia e innovazione tecnologica). In particolare, la collana Miscellanea INGV raccoglie reports di progetti scientifici, proceedings di convegni, manuali, monografie di rilevante interesse, raccolte di articoli ecc..

Coordinamento editoriale e impaginazione Centro Editoriale Nazionale | INGV

Progetto grafico e redazionale Daniela Riposati | Laboratorio Grafica e Immagini | INGV Roma

© 2016 INGV Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata, 605 00143 Roma Tel. +39 06518601 Fax +39 065041181

http://www.ingv.it

Istituto Nazionale di Geofisica e Vulcanologia