

QUADERNI di GEOFISICA

Bollettino Sismico Italiano 2013

Direttore Responsabile

Valeria DE PAOLA

Editorial Board

Luigi CUCCI - Editor in Chief (luigi.cucci@ingv.it)

Raffaele AZZARO (raffaele.azzaro@ingv.it)

Christian BIGNAMI (christian.bignami@ingv.it)

Mario CASTELLANO (mario.castellano@ingv.it)

Viviana CASTELLI (viviana.castelli@ingv.it)

Rosa Anna CORSARO (rosanna.corsaro@ingv.it)

Domenico DI MAURO (domenico.dimauro@ingv.it)

Mauro DI VITO (mauro.divito@ingv.it)

Marcello LIOTTA (marcello.liotta@ingv.it)

Mario MATTIA (mario.mattia@ingv.it)

Milena MORETTI (milena.moretti@ingv.it)

Nicola PAGLIUCA (nicola.pagliuca@ingv.it)

Umberto SCIACCA (umberto.sciacca@ingv.it)

Alessandro SETTIMI (alessandro.settimi1@istruzione.it)

Andrea TERTULLIANI (andrea.tertulliani@ingv.it)

Segreteria di Redazione

Francesca DI STEFANO - Coordinatore Rossella CELI Barbara ANGIONI

redazionecen@ingv.it

REGISTRAZIONE AL TRIBUNALE DI ROMA N.174 | 2014, 23 LUGLIO

© 2014 INGV Istituto Nazionale di Geofisica e Vulcanologia

Rappresentante legale: Carlo DOGLIONI Sede: Via di Vigna Murata, 605 | Roma

QUADERNI di GEOFISICA

Bollettino Sismico Italiano 2013

Italian Seismic Bulletin 2013

Alessandro Marchetti¹, Luca Arcoraci², Patrizia Battelli¹, Michele Berardi¹, Corrado Castellano², Lucia Margheriti¹, Franco Mele¹, Anna Nardi¹ e Antonio Rossi¹

¹INGV | Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti

²INGV | Istituto Nazionale di Geofisica e Vulcanologia, Sezione Sismologia e Tettonofisica

Accettato 6 settembre 2019 | Accepted 6 September 2019

Come citare | How to cite Marchetti A., Arcoraci L., Battelli P., Berardi M., Castellano C., Margheriti L., Mele F., Nardi A. e Rossi A., (2020). Bollettino Sismico Italiano 2013. Quad. Geofis., 159: 1-50.

In copertina Rappresentazione grafica delle sequenze sismiche individuate nel BSI 2013 | Cover Graphic representation of the seismic sequences identified in BSI 2013

159

INDICE

Riassunto	1
Abstract	7
1. La Rete Sismica Nazionale nel 2013	7
2. La sismicità italiana nel 2013	10
3. Sequenze sismiche del 2013	13
3.1 Criteri di selezione	14
3.2 Principali sequenze sismiche nel 2013	17
3.2.1 Alpi orientali	17
3.2.2 Appennino settentrionale	17
3.2.3 Appennino centrale e costa adriatica	18
3.2.4 Appennino centro-meridionale 3.2.5 Appennino meridionale	20 20
3.2.6 Stretto di Messina e Sicilia nord-orientale	21
3.3 Sismicità diffusa	23
3.4 Cluster significativi	23
4. Esplosioni in cava	24
5. Frane	27
6. Sintesi della sismicità analizzata nel 2013	29
7. Qualità delle localizzazioni	29
Analisti del BSI per l'anno 2013	31
Ringraziamenti - Acknowledgments	32
Bibliografia	32
Allegato A: Stazioni della Rete Sismica Nazionale operative nel 2013	36

Riassunto

Questo lavoro descrive lo stato della Rete Sismica Nazionale (RSN) e delinea le principali caratteristiche della sismicità registrata in Italia nel corso del 2013. Sono 417 le stazioni sismiche che vengono acquisite per la RSN durante il 2013; la maggior parte di proprietà dell'Istituto Nazionale di Geofisica e Vulcanologia (INGV) mentre le restanti appartengono a reti locali, regionali o a reti di monitoraggio estere.

Il Bollettino Sismico Italiano (BSI) del 2013 contiene 25180 terremoti localizzati, di cui quasi due terzi appartengono alle 41 sequenze sismiche individuate; tra di esse la più rilevante è quella iniziata a giugno nella zona della Lunigiana che ha fatto registrare anche il terremoto più forte del 2013: $\rm M_L$ 5.2, avvenuto il 21 giugno. La magnitudo minima di completezza del BSI 2013 su tutto il territorio nazionale è pari a $\rm M_C$ 1.2. Un capitolo del lavoro illustra la sismicità di origine antropica presente nel BSI (circa l'1%) e i sismogrammi di una frana da crollo avvenuta nell'arco alpino, area in cui avvengono molto frequentemente fenomeni di questo tipo.

Abstract

This paper describes the status of the National Seismic Network (RSN) and outlines the main characteristics of the seismicity recorded in Italy during 2013. In this year 417 seismic stations were acquired for the RSN, most of them owned by the National Institute of Geophysics and Volcanology (INGV) while the other coming from local, regional or foreign monitoring networks.

The Italian Seismic Bulletin (BSI) of 2013 contains 25180 located earthquakes, of which almost two thirds belong to the 41 seismic sequences identified; among these the most significant is the one that began in June in Lunigiana, which also recorded the strongest earthquake of 2013: M_L 5.2, which occurred on June 21st.

The minimum magnitude of completeness of the BSI in 2013 is $M_{\rm c}$ 1.2. A chapter of the work illustrates the seismicity of anthropic origin present in the BSI (about 1%) and the seismograms of a collapse landslide occurred in the Alpine arc, an area where phenomena of this type occur very frequently.

1. La Rete Sismica Nazionale nel 2013

Nel 2013 hanno contribuito al Bollettino Sismico Italiano (BSI) 417 stazioni sismiche permanenti; esse includono tutte le stazioni della Rete Sismica Nazionale (RSN) e numerose stazioni di altri enti italiani ed esteri con cui l'INGV ha instaurato collaborazioni per lo scambio di segnali. La tabella 1 riporta la composizione strumentale della Rete Sismica Nazionale nel 2013 e la figura 1 mostra la distribuzione delle stazioni operative nell'anno. Nel 2013 sono stati attivati 28 nuovi canali di acquisizione dati sia in seguito a nuove installazioni sia attraverso il collegamento al Centro Nazionale Terremoti dell'INGV di Roma di stazioni di altre reti sismiche locali ed estere. Delle 417 stazioni sismiche permanenti, 43 risultano equipaggiate con il solo sensore accelerometrico. In Trentino Alto Adige sono stati selezionati tre nuovi siti di stazione in provincia di Trento (CARE, GAGG e RONC). In Emilia-Romagna sono stati attivati due nuovi canali di acquisizione per le stazioni di NOVI (in provincia di Modena) e FERS (sensori sismometrico e accelerometrico in superficie) in provincia di Ferrara. In Toscana sono state installate sette nuove stazioni: CARD e SARM in provincia di Lucca, FOSD in provincia di Massa Carrara (aperta a giugno e chiusa a settembre), MTCR in provincia di Pistoia, PII in provincia di Pisa, SEI e LMD in provincia di Firenze. Un nuovo canale di acquisizione è stato attivato nelle Marche per la stazione di PP3 in provincia di Macerata.

In Umbria è stata acquisita una nuova stazione: ATRE in provincia di Perugia. Nel Lazio, in provincia di Roma, è stata installata la stazione SRES, mentre 3 nuovi siti di stazione sono stati selezionati in Campania: MOSC (in provincia di Avellino) aperta ad agosto e chiusa a dicembre, VITU (in provincia di Benevento) e VTIR (in provincia di Napoli). Sei nuove stazioni sono state rese operative in Sicilia: 5 in provincia di Catania (EMSG, ENIC, EPOZ, EPZF e ESML) e una in provincia di Agrigento (LISA).

Al di fuori dei confini nazionali è stato realizzato il collegamento di altre 4 stazioni sismometriche: AJAC e PGF in Corsica (mentre PGT2 viene dismessa), MTLF e ORIF in Francia. Durante l'anno sono state inoltre acquisite in tempo reale alcune stazioni temporanee; in particolare in occasione della sequenza sismica di giugno della Lunigiana (T0911 e T0912) e quella iniziata nel dicembre 2013 nel Sannio-Matese (T1011 e T1012).

Nel corso del 2013 alcune stazioni della RSN sono state dismesse non concorrendo più al monitoraggio sismico del territorio nazionale: Monte Pizzetto (PZZT) in provincia di Bologna, Cantone (ATCA) in provincia di Perugia, Montasola (MNS) e Poggio Cancelli (RM32) in provincia di Rieti, Monte San Gregorio (GIO) e Stromboli 3 (STR3) in Sicilia.

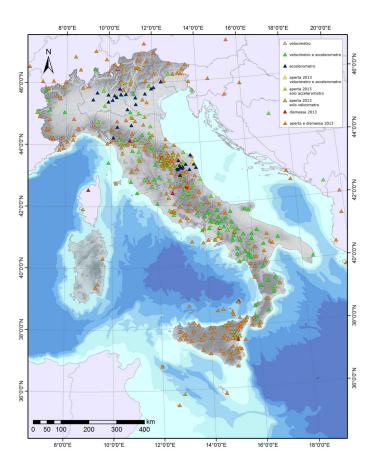


Figura 1 Mappa delle stazioni della Rete Sismica Nazionale operanti nel corso del 2013. Le stazioni che hanno funzionato per tutto il 2013 sono indicate da triangoli verdi se dotate di velocimetro e accelerometro, in arancione se con il solo velocimetro, in blu se equipaggiate con il solo accelerometro. I triangoli gialli indicano le nuove stazioni installate e quelli rossi le stazioni dismesse nel 2013.

Figure 1 Map of the Italian National Seismic Network operating during 2013. Green triangles show the stations that operated during the whole 2013, equipped with both velocimeter and accelerometer, orange triangles show stations with velocimeter only, blue triangles with accelerometer only. Yellow triangles show new stations installed, and red triangles show stations dismissed during 2013.

Numero totale di stazioni	417	comprese 7 dismesse nel 2013 e 2 aperte/chiuse nel 2013
Nuove installazioni 2013	28	di cui 4 nuove acquisizioni da collaborazioni con enti esteri
Totale velocimetri	374	
Velocimetri verticali	9	
Velocimetri a 3 componenti	365	
Stazioni accelerometriche	158	di cui 43 solo accelerometriche
Sensori in pozzo (^)	9	
Stazioni fondo marino (#)	1	SN1
Totale stazioni fuori dei confini	30	1 HL-NOA; 11 ETH; 4 MN; 2 AO; 3 AC; 2 CR; 4RD; 1 FR; 2 SL
Stazioni Geofon (in Italia)	1	MATE
Trillium-240s	12	
Trillium-120s	29	
Trillium-40s	189	
S-13 (terna)	2	
S-13	4	solo verticale
SS1-Ranger	5	solo verticale
Le3D-5s	38	2 sensori accoppiati con Malin in pozzo (BAT1 e BAT2)
Le3D-20s	4	
Le3D-1s	17	
L4-C-3D	5	
L4-C	1	LISA
CMG-3T-100s	2	
CMG-1T-360s	1	SN1
CMG40T-30s	6	
CMG40T-60s	8	
CMG-3TB	1	FERB
CMG-3ESP	1	AJAC
KS-2000	1	FAEN
STS1-VBB	1	VSL
STS2-120s	43	
STS2-3G-120s	1	BOJS
Malin	5	2 sensori accoppiati con Le3D-5s in pozzo (BAT1 e BAT2)
Episensor	147	
CMG-5T	2	
CMG-5TB	1	FERB
SF3000	8	

Tabella 1 Composizione strumentale della Rete Sismica Nazionale nel corso del 2013. **Table 1** Instruments of the Italian National Seismic Network installed during 2013.

2. La sismicità italiana nel 2013

Il 2013 è stato un anno sismicamente molto attivo, caratterizzato da parecchie sequenze e sciami sismici e dalla lunga coda della sequenza emiliana iniziata nel mese di maggio dell'anno precedente [Scognamiglio et al., 2012; Tertulliani et al., 2012; Govoni et al., 2014; Chiarabba et al., 2014; Carannante et al., 2015]. A riprova di ciò basti pensare che il BSI 2013 contiene 25180 eventi sismici localizzati (Figura 2), contro i 18221 del 2012.

Il terremoto più forte dell'anno, avvenuto il 21 giugno (10:33 UTC), è stato localizzato nella zona della Lunigiana tra le province di Lucca e Massa Carrara; ha avuto una M_I pari a 5.2, una M_W pari a 5.1 ed è stato l'evento principale di una lunga sequenza sismica che ha interessato la seconda parte del 2013 [Margheriti et al., 2014]. Il secondo evento di magnitudo più rilevante del 2013 è invece avvenuto negli ultimi giorni dello stesso anno, il 29 dicembre alle ore 17:08 UTC. Ha avuto M₁ e M₁ pari a 5.0 ed è stato localizzato nella zona del Matese, tra le province di Caserta e Campobasso; anche questo terremoto è stato il mainshock di una sequenza sismica di una certa rilevanza [De Gori et al., 2014].

L'evento sismico più profondo registrato nel 2013 è avvenuto nel settore più settentrionale della zona di subduzione del Mar Tirreno [Chiarabba et al., 2008]; qui, dove il piano di scorrimento tra le placche interessate immerge più in profondità, avvengono terremoti con ipocentro anche oltre i 600 chilometri. Questo in particolare è stato localizzato molto a nord di questa zona, in provincia di Latina, al confine tra Lazio e Campania; è avvenuto l'8 settembre (01:08 UTC) ad una profondità di 427 km e ha avuto una M_1 pari a 3.2. Ben 41 sono state le sequenze sismiche individuate nel corso del 2013; esse hanno interessato praticamente tutto il settore appenninico. Oltre a quelle già citate della Lunigiana e del Matese, di rilievo sono state quelle avvenute a febbraio, giugno e agosto tra Sora e San Donato Val di Comino [Frepoli et al., 2017] e quella al largo del Conero nel mese di luglio. Come per il 2012, anche il 2013 è stato interessato dal lungo periodo sismico della Valtiberina [Chiaraluce et al., 2014], mentre nella zona del Pollino [Margheriti et al., 2014; De Gori et al., GNGTS 2014] ci sono state delle riprese di attività sismica, iniziata negli anni precedenti, in particolare dalla fine del mese di maggio.

Come già detto, il BSI del 2013 contiene 25180 terremoti localizzati in Italia e nelle zone di confine (Figura 2); per circa il 90% di questi è stata stimata la magnitudo locale M, utilizzando la legge di attenuazione di Hutton e Boore [1987], per poco meno del 10 % invece si è calcolata la magnitudo durata (M_p), utilizzando la relazione di Console et al. [1988]. Per gli eventi più forti, una cinquantina, è stato calcolato il momento tensore utilizzando la tecnica dei Time Domain Moment Tensor (TDMT [Dreger and Helmberger, 1993; Dreger, 2003]) nella versione sviluppata all'INGV [Scognamiglio et al., 2009; 2010].

Per la sismicità del 2013 si può fare un discorso analogo a quello del 2012, dove l'accadimento di parecchie sequenze e sciami sismici aumenta la frequenza di terremoti ravvicinati nel tempo, con il conseguente ricorso al calcolo della M_D per la stima della magnitudo.

Il BSI 2013 contiene più di 9200 eventi di magnitudo minore o uguale a 1.0, che corrispondono a quasi il 37% di tutta la sismicità registrata nel corso dell'anno; questa percentuale è nettamente maggiore di quella registrata nel 2012 che fu di circa il 23%.

I motivi di questa differenza possono essere spiegati con il maggior numero di sequenze sismiche del 2013 rispetto al 2012 (41 contro 27) e con la soglia di detezione relativamente alta della sequenza emiliana del 2012. In particolare gli interventi della rete mobile in occasione di alcune delle sequenze del 2013, incrementando il numero delle stazioni sismiche, hanno permesso di localizzare un maggior numero di eventi di bassa magnitudo. Al contrario la sequenza del 2012 dell'Emilia, a causa dell'elevata antropizzazione dell'area colpita e nonostante l'alto numero di stazioni sismiche della rete mobile impiegate, non ha permesso di abbassare di molto il livello di detezione perdendo molti eventi di magnitudo inferiore a 1 a causa dell'alto rumore sismico di fondo dei segnali registrati.

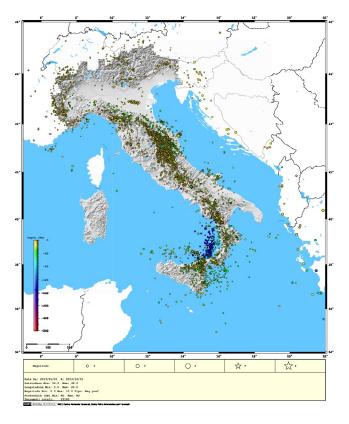
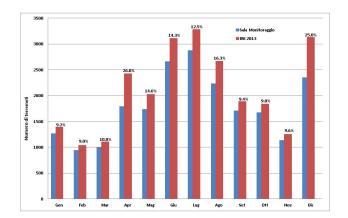



Figura 2 Mappa della sismicità italiana estratta dal Bollettino Sismico Italiano del 2013. I parametri ipocentrali sono ricavabili in http://terremoti.ingv.it/iside [ISIDe working group, 2016].

Figure 2 Map of the Italian seismicity recorded in 2013, extracted from the Italian Seismic Bulletin. Hypocentral parameters are available at http://terremoti.ingv.it/en/iside [ISIDe working group, 2016].

La figura 3 mostra il confronto tra il numero mensile di terremoti localizzati nella sala di monitoraggio sismico della sede dell'INGV di Roma e quello presente nel BSI del 2013; mediamente ogni mese il BSI contiene in più una percentuale di eventi sismici variabile tra il 9 e il 16%. Le differenze maggiori si hanno nel mese di aprile (26%) e dicembre (25%); il primo caso è dovuto ad un intensificarsi del periodo sismico della Valtiberina [Chiaraluce et al., 2014], iniziato negli anni precedenti, a partire dal 20 aprile 2013. Nel mese di dicembre invece si sono verificate una serie considerevole di sequenze sismiche, che verranno discusse nel seguito, tra cui la più rilevante è quella avvenuta nella zona del Matese (sequenza n° 41 in Tabella 3).

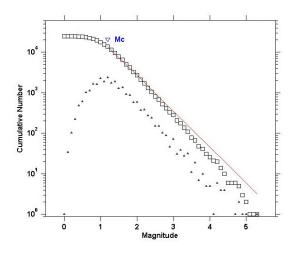
Figura 3 Distribuzione mensile del numero di terremoti presenti nel BSI 2013 (rosso) e di quelli localizzati nella sala di monitoraggio sismico dell'INGV di Roma (blu). La percentuale si riferisce alla differenza tra i due valori rispetto al numero totale di eventi del BSI.


Figure 3 Monthly distribution of earthquakes reported in the BSI 2013 (red) compared to the number of seismic events located at the earthquake monitoring center of the INGV in Rome (blue) in the 2013. The percentage refers to the difference between the two numbers, with respect to the BSI number.

Nella figura 4 viene mostrato il numero cumulato di eventi sismici presenti nel BSI 2013; le due stelle gialle indicano quelli di magnitudo locale maggiore o uguale a 5.0 avvenuti nel corso dell'anno, di cui si è già accennato in precedenza.

Osservando la curva in figura, si possono notare degli aumenti di sismicità anche non a ridosso degli eventi principali; essi sono dovuti al notevole numero di piccoli sciami e sequenze sismiche avvenute nel 2013.

Figura 4 Numero cumulato di terremoti presenti nel BSI 2013. Le stelle indicano i terremoti di magnitudo $M_L \ge 5.0$.


Figure 4 Cumulative number of earthquakes in BSI 2013. Stars show earthquakes with $M_1 \ge 5.0$.

La magnitudo minima di completezza $M_{\rm C}$ del BSI 2013 è stata calcolata con il metodo della massima verosimiglianza utilizzando il software ZMAP [Wiemer, 2001]. Il valore ottenuto per l'intero anno è pari a 1.2, con b = 0.885 ± 0.007 e a = 5.2; la distribuzione cumulata e noncumulata, in funzione della magnitudo, dei terremoti avvenuti nel 2013 è mostrata in figura 5. Va ricordato che, prima di calcolare la $M_{\rm C}$, il dataset iniziale viene ripulito togliendo i terremoti con profondità ipocentrale \geq 38 km, corrispondente al valore medio della profondità della Moho nel modello a strati piani e paralleli utilizzato per la localizzazione dei terremoti del BSI (vedi Tabella 2); vengono inoltre eliminati la sismicità di confine e circa 250 eventi di probabile natura antropica legata ad esplosioni in cave estrattive. I valori di $M_{\rm C}$ per gli anni precedenti sono stati pari a 1.6 nel 2009 e 2010, di 1.5 nel 2011 e di 1.4 nel 2012.

Figura 5 Gutenberg-Richter cumulata (quadrati) e non-cumulata (triangoli) calcolata sull'intero BSI 2013. I valori di a, b e Mc (Magnitudo Minima di Completezza) sono stati calcolati utilizzando il software ZMAP [Wiemer, 2001]. La magnitudo minima di completezza apparente è 1.2.

Figure 5 Cumulative (squares) and non-cumulative (triangles) Gutenberg-Richter distribution of the whole BSI 2013. The values of a, b and Mc (Minimum Magnitude of Completeness) have been calculated using the software ZMAP [Wiemer, 2001]. The apparent minimum magnitude of completeness is 1.2.

Maximum Likelihood Solution b-value = 0.885 +/- 0.007, a value = 5.2, a value (annual) = 5.2 Magnitude of Completeness = 1.2

Spessore (km)	Velocità P (km/s)	Velocità S (km/s)
11.1	5.00	2.89
26.9	6.50	3.75
semispazio	8.05	4.65

Tabella 2 Modello di velocità utilizzato per le localizzazioni del BSI 2013, costituito da due strati crostali a velocità costante e un semispazio. Il rapporto Vp/Vs è ovunque 1.732.

Table 2 Velocity model used in the locations of the BSI 2013: two homogeneous crustal layers over a homogeneous half-space. The Vp/Vs ratio is everywhere 1.732.

La figura 6 mostra l'andamento nel corso del 2013 della magnitudo minima di completezza $\rm M_{\rm c}$; per evitare un effetto di bordo nel calcolo della media mobile, sono stati inclusi anche gli ultimi due mesi del 2012.

Questo andamento abbastanza irregolare è dovuto probabilmente alle numerose sequenze sismiche occorse nell'anno; come ci si aspetta, le oscillazioni maggiori del valore della $M_{\rm c}$ avvengono in corrispondenza delle principali sequenze sismiche.

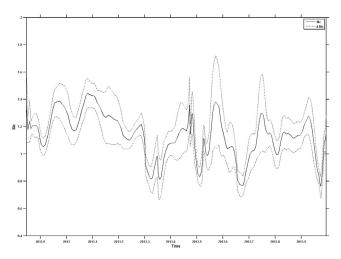


Figura 6 Andamento temporale della magnitudo di completezza Mc nel corso del 2013 e relativo errore calcolati utilizzando il software ZMAP [Wiemer, 2001]. Il tempo è espresso in anni e decimi di anno.

Figure 6 Variation of the magnitude of completeness Mc during 2013 and its error computed using the ZMAP software [Wiemer, 2001]. Time is expressed in years and tenths of a year.

3. Sequenze sismiche del 2013

L'individuazione delle principali sequenze sismiche del 2013 presenti all'interno del BSI, è stata ottenuta, come per gli anni precedenti, utilizzando l'algoritmo di declustering di Reasenberg [1985] a cui sono stati aggiunti una serie di criteri di selezione, definiti dagli analisti del BSI, che verranno illustrati in seguito. Si ricorda che l'algoritmo utilizzato analizza spazialmente e temporalmente tutti gli eventi sismici, individuando eventuali cluster che vengono rappresentati da un terremoto equivalente; due eventi vengono associati in un cluster se vicini temporalmente e spazialmente. Il periodo di associabilità di ogni evento varia da 2 a 10 giorni a seconda della loro magnitudo; spazialmente, due eventi di magnitudo M1 e M2 sono associati nello stesso cluster se la distanza tra i due ipocentri è inferiore alla somma dei raggi r1 e r2 delle faglie circolari equivalenti ai due terremoti secondo il modello di Kanamori e Anderson [1975].

La distanza minima di associazione viene corretta tenendo conto degli errori orizzontali e verticali di localizzazione; in questa analisi delle sequenze il fattore correttivo è pari rispettivamente a 2 e a 5 chilometri, al contrario degli anni precedenti in cui il valore di correzione era 5 sia per l'errore sul piano orizzontale che per la profondità. La diminuzione del fattore correttivo dell'errore orizzontale permette di individuare i cluster in maniera più precisa, specialmente in presenza di aree con alta sismicità di fondo.

Le coordinate ipocentrali dell'evento equivalente sono calcolate come media pesata delle coordinate degli eventi maggiori della sequenza, mentre la magnitudo equivalente si ottiene dal calcolo del momento sismico totale rilasciato dal cluster.

In questa analisi si intende per sequenza un gruppo di eventi sismici individuato dall'algoritmo di Reasenberg, prescindendo quindi dalla presenza di un mainshock all'interno del gruppo. La figura 7 mostra le principali sequenze sismiche individuate nel 2013.

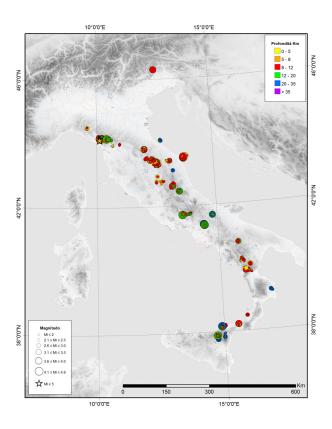


Figura 7 Rappresentazione grafica delle sequenze sismiche individuate nel BSI 2013 utilizzando l'algoritmo di declustering di Reasenberg [1985]. Il colore indica la profondità degli eventi; la dimensione dei simboli è proporzionale alla magnitudo.

Figure 7 Graphic representation of the seismic sequences identified in BSI 2013 by applying the declustering algorithm of Reasenberg [1985]. Dots are color-coded according to the depth of the earthquakes; the size of the symbols is proportional to the magnitude.

3.1 Criteri di selezione

Una fase preliminare all'individuazione delle sequenze sismiche nel BSI 2013 (scaricabile dalla pagina web http://terremoti.ingv.it/iside [ISIDe working group, 2016]), consiste nel "ripulire" il catalogo da tutti i probabili eventi di natura antropica (circa 250 esplosioni in cava; vedi capitolo 4 per maggiori dettagli), dai terremoti con profondità ipocentrale ≥ 38 km (corrispondente al

valore medio della profondità della Moho nel modello a strati piani e paralleli utilizzato per la localizzazione dei terremoti del BSI) e dalla sismicità di confine.

Il data set risultante è l'input dell'algoritmo di declustering di Reasenberg [1985] che individuerà un certo numero di cluster che verranno ulteriormente selezionati tra quelli che soddisfano almeno uno dei seguenti due criteri:

- almeno 10 terremoti di cui almeno uno di magnitudo $M_L \ge 2.5$;
- almeno 20 terremoti a prescindere dalla loro magnitudo.

Il risultato finale è la lista delle 41 sequenze sismiche mostrate in tabella 3, mentre la tabella 4 (paragrafo 3.4) riporta i cluster con almeno un evento di magnitudo M_L 3.5 o superiore, che sono però esclusi dall'analisi delle sequenze perché costituiti da meno di 10 eventi (vengono tuttavia riportati ugualmente in quanto terremoti significativi).

n°	Area epicentrale Comune (Provincia)	1° evento	Durata (giorni)	n° ev.	E	Evento equivalente		Evento di magnitudo massima		Evento secondo in magnitudo		
		tempo origine			Lat. N	Lon. E	Prof.	M_L	tempo origine	M_L	tempo origine	M _L
1	Gubbio (Perugia)	121229 07:33	852.535	20996	43.40	12.48	7.49	5.05	131222 10:06	3.8	131218 10:58	3.7
2	San Teodoro (Messina)	130104 07:50	16.964	75	37.88	14.72	13.21	4.25	130104 07:50	4.2	130109 16:10	2.9
3	Castiglione di Garfagnana (Lucca)	130125 14:48	74.849	423	44.18	10.50	14.78	4.76	130125 14:48	4.7	130130 23:42	3.3
4	Claut (Pordenone)	130210 03:10	2.759	18	46.31	12.58	10.18	3.75	130212 18:12	3.7	130212 13:19	2.6
5	Sora (Frosinone)	130215 18:58	35.19	68	41.74	13.61	15.19	4.64	130216 21:16	4.6	130223 17:17	3.2
6	L'Aquila (Gran Sasso)	130217 01:00	84.738	164	42.48	13.48	14.75	3.85	130217 01:00	3.6	130309 02:54	3.4
7	Largo di Rimini	130401 05:50	50.751	31	44.08	12.75	20.78	3.12	130411 03:46	2.5	130414 07:20	2.4
8	Moliterno (Potenza)	130410 22:56	39.01	83	40.21	15.90	10.22	3.07	130516 17:38	2.4	130424 15:31	2.2
9	Bedonia (Parma)	130414 04:34	9.465	20	44.53	9.61	9.08	3.15	130414 04:34	2.6	130414 04:35	2.6
10	Massa Martana (Perugia)	130505 01:31	43.267	46	42.78	12.54	7.80	3.09	130604 02:20	2.6	130606 23:48	2.3
11	Francavilla in Sinni (Potenza)	130513 06:28	18.101	28	40.06	16.22	10.48	3.36	130513 06:28	3.2	130522 02:04	2.6
12	Muccia (Macerata)	130522 13:21	28.733	20	43.13	13.25	24.94	2.94	130605 05:40	2.6	130529 06:17	2.3
13	Moliterno (Potenza)	130527 23:12	51.799	38	40.25	15.90	9.22	2.85	130529 12:41	2.5	130604 04:44	2.1
14	Mormanno (Cosenza)	130529 00:07	179.126	308	39.89	16.05	8.11	3.74	131105 17:26	3.3	130605 09:26	3.0
15	San Donato Val di Comino (Frosinone)	130609 19:16	5.181	22	41.71	13.76	9.36	2.91	130610 09:03	2.6	130612 06:07	2.4
16	Abetone (Pistoia)	130610 03:20	0.851	24	44.12	10.66	15.54	2.78	130610 23:11	2.2	130610 23:11	2.2
17	Casola in Lunigiana (Massa-Carrara)	130621 10:33	279.444	3031	44.19	10.19	8.59	5.22	130621 10:33	5.2	130623 15:01	4.3
18	Cupramontana (Ancona)	130627 03:49	87.499	515	43.44	13.13	8.76	3.81	130703 17:59	3.3	130702 22:52	3.0
19	Città di Castello (Perugia)	130701 16:27	1.819	21	43.51	12.26	6.85	2.58	130701 17:48	2.3	130701 16:36	1.8
20	Bevagna (Perugia)	130703 11:47	16.549	21	42.95	12.59	8.83	3.11	130714 08:18	2.8	130707 18:49	2.6
21	Rosarno (Reggio Calabria)	130709 14:32	8.517	87	38.46	15.94	9.78	3.31	130709 17:22	2.7	130709 15:48	2.5

22	Verghereto	130710	60.455	378	43.82	12.04	9.09	4.07	130711	3.8	130711	3.2
	(Forlì-Cesena) Largo del Conero	18:11 130720							04:32 130721		12:08 130822	
23	(Ancona)	19:46	91.216	158	43.55	13.77	8.42	4.91	01:32	4.8	06:44	4.3
24	Sansepolcro (Arezzo)	130725 05:04	9.599	38	43.54	12.12	8.87	3.02	130731 23:51	2.7	130801 01:00	2.4
25	San Donato Val di Comino (Frosinone)	130803 00:51	34.728	109	41.74	13.89	15.43	3.35	130805 01:46	2.6	130803 22:50	2.5
26	Patti (Messina)	130815 23:04	79.005	402	38.13	14.91	16.12	4.36	130815 23:04	4.1	130815 23:06	4.1
27	Lagopesole (Potenza)	130917 22:56	4.228	26	40.80	15.79	12.57	3.51	130917 22:56	3.2	130917 23:38	3.2
28	Spoleto (Perugia)	131001 16:33	103.137	88	42.78	12.75	8.82	3.38	131021 19:47	2.7	131023 03:45	2.7
29	Leonessa (Rieti)	131002 23:24	2.791	44	42.58	13.12	11.23	2.97	131002 23:24	2.2	131005 13:00	2.1
30	Etna	131025 09:15	6.472	117	37.86	15.00	27.68	3.50	131026 01:20	2.9	131025 12:05	2.8
31	Pescia (Pistoia)	131119 01:11	34.979	42	43.95	10.70	7.29	3.07	131209 02:51	2.5	131119 21:05	2.4
32	Crotone	131123 19:48	5.865	75	39.22	16.99	26.25	3.40	131124 20:04	2.9	131129 04:45	2.8
33	Amatrice (Rieti)	131123 22:11	64.974	85	42.65	13.23	11.75	3.89	131130 20:13	3.8	131129 17:59	2.9
34	L'Aquila (Gran Sasso)	131207 02:24	36.712	40	42.48	13.48	14.86	3.50	131208 14:35	3.4	131216 06:34	2.5
35	Etna	131214 10:05	7.319	20	37.77	14.73	29.49	3.50	131214 21:49	3.4	131214 21:15	2.7
36	Ripabottoni (Campobasso)	131220 13:08	2.122	15	41.68	14.82	19.01	3.76	131220 13:08	3.7	131220 21:04	3.0
37	Golfo di Patti (Messina)	131223 04:13	16.127	52	38.17	15.03	11.25	3.41	140102 06:13	3.0	131223 16:17	2.9
38	Messina	131223 04:20	5.49	36	38.18	15.56	8.67	3.75	131223 04:20	3.7	131223 04:58	2.8
39	Sansepolcro (Arezzo)	131224 14:56	16.32	64	43.54	12.16	8.42	3.12	131225 08:12	2.6	131225 10:03	2.2
40	Pistoia	131228 23:33	20.451	67	43.99	11.00	10.96	3.12	140103 02:04	2.3	140103 00:31	2.2
41	Piedimonte Matese (Caserta)	131229 17:03	49.449	343	41.37	14.45	17.24	4.98	131229 17:08	5.0	140120 07:12	4.2

Tabella 3 Elenco dei cluster in ordine cronologico individuati nel BSI 2013 con l'algoritmo di Reasenberg [1985]. La tabella riporta il numero d'ordine del cluster, il nome dell'area interessata dalla sequenza, il tempo origine del primo evento della sequenza, la durata della sequenza in giorni e frazioni di giorno, il numero di eventi associati con magnitudo M₁ ≥ 1.5, i parametri del terremoto equivalente che riassume le caratteristiche mediate della sequenza, il tempo origine e la magnitudo dei due eventi maggiori della sequenza. La magnitudo dell'evento equivalente è ottenuta sommando il rilascio di momento sismico totale della sequenza. Sono stati selezionati i cluster con almeno 10 eventi e almeno un terremoto di magnitudo M₁ ≥ 2.5, i cluster con almeno 20 eventi di qualunque valore di magnitudo. I cluster con almeno due eventi e almeno un terremoto di magnitudo M₁ ≥ 3.5 sono riportati in tabella 4. Table 3 Chronological list of clusters detected in BSI 2013 with the Reasenberg algorithm [1985]. The table reports the cluster identification number, the toponym of the area struck by the sequence, the origin time of the first event, the duration of the sequence in days, the number of events with magnitude $M_i \ge 1.5$, the parameters of the equivalent earthquake, the origin time and magnitude of the two major earthquakes in the sequence. The magnitude of the equivalent earthquake is obtained computing the total moment release of the sequence. We selected clusters with at least 10 earthquakes and at least an event of magnitude $M_i \ge 2.5$, clusters with at least 20 events of any value of magnitude. Table 4 shows the clusters with at least two earthquakes and at least one earthquake with magnitude $M_1 \ge 3.5$.

3.2 Principali sequenze sismiche nel 2013

Verranno ora descritte brevemente, procedendo dal nord al sud dell'Italia, le sequenze sismiche individuate nel 2013, riportandone le principali caratteristiche: localizzazione, data e intervallo temporale, numero di terremoti ed eventi principali.

3.2.1 Alpi orientali

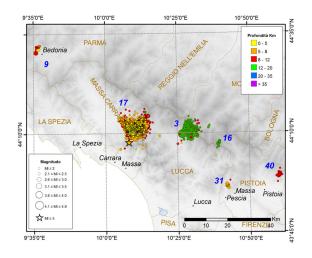
Nel corso del 2013 lungo l'arco alpino si è verificata solo una sequenza sismica avvenuta precisamente nelle Alpi Carniche, a NE di Claut, in provincia di Pordenone (Figura 8; sequenza n° 4; si veda anche Tabella 3). Si tratta di una piccola sequenza di 18 eventi avvenuta nel mese di febbraio della durata di 2-3 giorni e con un evento principale di M₁ 3.7.

Figura 8 Sequenza sismica avvenuta nel 2013 nelle Alpi Carniche.

Figure 8 Seismic sequence occurred in 2013 in the Carnic Alps.

3.2.2 Appennino settentrionale

Ben sei sequenze sismiche hanno interessato nel 2013 l'Appennino settentrionale (Figura 9). Partendo dal settore occidentale, e procedendo lungo il tratto appenninico, troviamo la breve sequenza sismica adiacente il piccolo comune di Bedonia, in provincia di Parma, caratterizzata da una ventina di terremoti con una magnitudo massima M_L 2.6 (seq. n° 9 in Figura 9 e Tabella 3). Molto più estesa sia in termini temporali che per numero di eventi è la sequenza che ha interessato la provincia di Massa-Carrara (seq. n° 17 in Figura 9 e Tabella 3): più di tremila terremoti, anche se distribuiti in quasi trecento giorni, con magnitudo massima M_L 5.2 (M_W 5.1). Proprio quest'ultimo è l'evento sismico più significativo dell'intero 2013 avvenuto alle 10:33 GMT del 21 giugno ad una profondità ipocentrale di 7 Km, seguito due giorni dopo da un'altra replica rilevante di M_L 4.3. La sequenza è stata abbastanza superficiale non arrivando a 9 Km di profondità di media [Margheriti et al., 2014; Pezzo et al., 2014].


Una sequenza significativa è stata registrata anche in provincia di Lucca (423 terremoti) ed ha avuto il suo apice con l'evento del 25 gennaio 2013 di magnitudo M_L 4.7 (seq. n° 3 in Figura 9 e Tabella 3). Rispetto a quella descritta precedentemente, questa sequenza si caratterizza per una profondità ipocentrale maggiore intorno ai 15 Km.

Poco più a Est è localizzata la breve sequenza nella zona dell'Abetone (seq. n° 16 in Figura 9 e Tabella 3): ventiquattro eventi con una magnitudo massima di M_L 2.2 e anche in questo caso una profondità media abbastanza elevata di oltre 15 Km.

Altre due sequenze all'interno della provincia di Pistoia: la prima ha interessato da vicino il comune di Pescia con 42 terremoti nell'arco di circa un mese con una magnitudo massima M_L 2.5 (seq. n° 31 in Figura 9 e Tabella 3); la seconda, più concentrata (67 eventi in circa 20 giorni), si è verificata a nord di Pistoia e ha avuto magnitudo massima M_L 2.3.

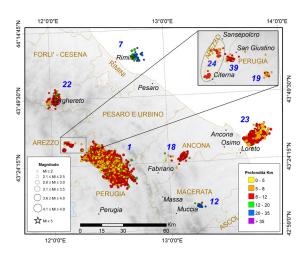
Figura 9 Sequenze sismiche avvenute nel 2013 in Appennino Settentrionale.

Figure 9 Seismic sequences occurred during 2013 in the Northern Apennines.

3.2.3 Appennino centrale e costa adriatica

Procedendo da Nord a Sud della penisola si descrivono di seguito le numerose sequenze sismiche che hanno interessato l'Appennino centrale ricomprendendo in questo paragrafo anche due delle tre sequenze avvenute in mare nell'arco del 2013.

In figura 10 vengono mostrate nove sequenze, tre delle quali ingrandite per meglio evidenziare la loro collocazione e il loro andamento. La prima sequenza in mare (seq. n° 7 in Figura 10 e Tabella 3) si è verificata a largo di Rimini. Trentuno eventi con una magnitudo massima M_L 2.5 e una profondità media piuttosto elevata di oltre 20 Km.


Quasi quattrocento eventi con una magnitudo massima M_L 3.8 sono stati registrati per la sequenza di Verghereto in provincia di Forlì-Cesena (seq. n° 22 in Figura 10 e Tabella 3). Tre le sequenze occorse in un'area molto delimitata tra Sansepolcro e Città di Castello (seq. n° 19, 24 e 39 in Figura 10 e Tabella 3). Caratteristiche simili per le tre sequenze con magnitudo massime che vanno da M_L 2.4 a M_L 2.7 e profondità ipocentrali medie piuttosto superficiali, tipiche dell'area (ipocentri con profondità minori di 10 Km).

Caratteristiche ipocentrali simili ma con numeri decisamente diversi per la sequenza della Valtiberina (seq. n° 1 in Figura 10 e Tabella 3); si tratta in realtà del lungo periodo sismico iniziato nel 2010 e che, per il solo 2013, ha fatto registrare ben 6796 terremoti con una magnitudo massima tuttavia non particolarmente elevata di M_{1} 3.8 [Chiaraluce et al., 2014; Valoroso et al., 2017].

Ad Est della zona della Valtiberina si è verificata la sequenza che ha interessato il comune di Cupramontana nelle Marche (seq. n° 18 in Figura 10 e Tabella 3). Caratteristica di quest'ultima è stata quella di avere un elevato numero di terremoti (515) in un arco spazio-temporale molto ristretto. La magnitudo massima tuttavia risulta piuttosto bassa ($M_{\rm l}$ 3.3).

Seconda sequenza localizzata interamente in mare è stata quella a largo del Monte Conero (seq. n° 23 in Figura 10 e Tabella 3). Centocinquantotto terremoti registrati durante l'estate del 2013 con una magnitudo massima M_{L} 4.8 il 21 luglio alle ore 01:32 GMT e una replica il giorno seguente M_{L} 4.3, con una profondità media degli eventi di poco superiore a 8 Km.

Più profonda (mediamente 25 Km) la sequenza a NE di Muccia (seq. n° 12 in Figura 10 e Tabella 3). Venti i terremoti registrati a cavallo tra maggio e giugno con una magnitudo massima di appena M₁ 2.6.

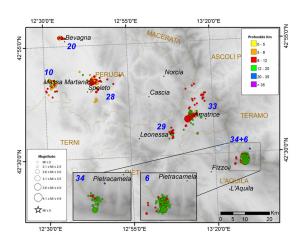


Figura 10 Sequenze sismiche dell'Appennino centrale e lungo la costa adriatica.

Figure 10 Seismic sequences of the central Apennines and along the Adriatic coast.

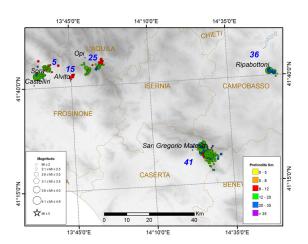
In figura 11 viene mostrato nuovamente un settore dell'Appennino centrale dove sono state individuate altre sette sequenze nel corso del 2013. Ben tre di queste insistono nella provincia di Perugia. La prima (seq. n° 20 in Figura 11 e Tabella 3) nei pressi del Comune di Bevagna si è verificata nel mese di luglio del 2013 e risulta composta da ventuno eventi con magnitudo massima M_L 2.8; la seconda (seq. n° 10 in Figura 11 e Tabella 3) nel comune di Massa Martana è caratterizzata da quarantasei terremoti tra maggio e giugno 2013 con magnitudo massima M_L 2.6; la terza in prossimità di Spoleto (seq. n° 28 in Figura 11 e Tabella 3), più significativa delle altre, presenta ottantotto eventi registrati a partire dall'inizio di ottobre con due eventi di magnitudo massima M_L 2.7. La profondità media di tutte e tre le sequenze risulta tra 7 e 8 Km. Due le sequenze registrate in provincia di Rieti (seq. n° 29 e 33 in Figura 11 e Tabella 3). Estremamente concentrata temporalmente la sequenza di Leonessa (quarantaquattro terremoti in meno di tre giorni) con magnitudo molto basse (valore massimo M_L 2.2); più diffusa sia spazialmente sia come intervallo temporale quella di Amatrice (ottantacinque eventi in più di due mesi) con magnitudo massima più significativa (M_L 3.8). Entrambe le sequenze del reatino presentano profondità medie ipocentrali superiori ai 10 Km.

A nord dell'Aquila sono state registrate due sequenze "gemelle" ovvero che hanno insistito esattamente sulle stesse coordinate geografiche ma in tempi diversi ed è stato necessario creare un effetto grafico per poterle visualizzare entrambe (seq. n° 6 e 34 in Figura 11 e Tabella 3). A febbraio è cominciata la prima (n°6) che è durata circa tre mesi contando oltre ottanta eventi sismici e un picco di magnitudo M_L 3.6; in dicembre la seconda (quaranta terremoti in circa un mese) con magnitudo massima M_L 3.4. Gemelle anche per le profondità ipocentrali medie che, in entrambi i casi, sono attestate intorno ai 15 Km.

Figura 11 Sequenze sismiche dell'Appennino centrale.

Figure 11 Seismic sequences of the central Apennines.

3.2.4 Appennino centro-meridionale


Nel 2013 sono state registrate cinque sequenze sismiche proprio dove finisce l'Appennino centrale e inizia quello meridionale (Figura 12).

Tre sono le sequenze rilevate in provincia di Frosinone [Frepoli et al., 2017]. Sicuramente più significativa dal punto di vista di magnitudo massima quella iniziata nel mese di febbraio caratterizzata da sessantotto terremoti in poco più di un mese e che ha avuto il suo apice nell'evento del 16 febbraio di M_L 4.6 (seq. n° 5 in Figura 12 e Tabella 3). Decisamente più bassa la magnitudo della sequenza n° 15 in prossimità del comune di Alvito (la magnitudo massima registrata è stata M_L 2.6 con un totale di ventidue eventi) mentre numericamente rilevante quella adiacente alla precedente che, pur avendo lo stesso picco di magnitudo, ha registrato più di un centinaio di terremoti (seq. n° 25 in Figura 12 e Tabella 3). Inoltre, in due giorni, alcuni terremoti (con magnitudo massima M_L 3.7) si sono verificati presso Ripabottoni in provincia di Campobasso (seq. n° 36 in Figura 12 e Tabella 3). Quasi 20 Km è stata la profondità ipocentrale media della sequenza. Ultima sequenza in ordine temporale del 2013, iniziata nel dicembre e proseguita nel 2014, è stata quella che ha interessato la provincia di Caserta (seq. n° 41 in Figura 12 e Tabella 3). Si tratta di una delle sequenze più significative dell'anno che ha registrato un numero elevato di terremoti (343) e una magnitudo massima M_L 5.0, evento registrato il 29 dicembre alle ore 17:08 UTC. Una replica di M_1 4.2 è stata registrata il 20 gennaio 2014.

La profondità leggermente superiore alla media dell'Appennino Meridionale di questi eventi ha fatto ipotizzare un coinvolgimento di intrusione di fluidi nella genesi di questa sequenza sismica [Di Luccio et al., 2018].

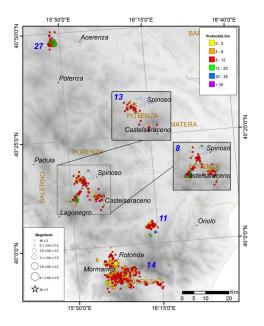

Figura 12 Sequenze sismiche tra Appennino centrale e meridionale.

Figure 12 Seismic sequences between the central and southern Apennines.

3.2.5 Appennino meridionale

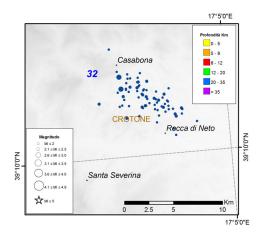

In figura 13 sono riportate le sequenze occorse nell'Appennino meridionale durante il 2013. Quasi tutte queste sequenze sismiche, ad eccezione di una, hanno colpito la provincia di Potenza. Nel mese di settembre in circa quattro giorni sono stati registrati ventisei eventi vicino al comune di Lagopesole (seq. n° 27 in Figura 13 e Tabella 3). In poco più di mezz'ora si sono verificati i due eventi più significativi della sequenza, entrambi con magnitudo M_L 3.2. Due sequenze sono state registrate nel territorio di Moliterno tra aprile e giugno (seq. n° 8 e 13 in Figura 13 e Tabella 3). La prima caratterizzata da ottantatré eventi con una magnitudo massima M_L 2.4, mentre la seconda ha avuto meno terremoti (trentotto) ma una magnitudo massima leggermente superiore M_L 2.5. Ultima sequenza della provincia di Potenza è stata quella nei pressi del comune di Francavilla in Sinni (seq. n° 11 in Figura 13 e Tabella 3). Ventotto terremoti con un picco di magnitudo M_L 3.2.

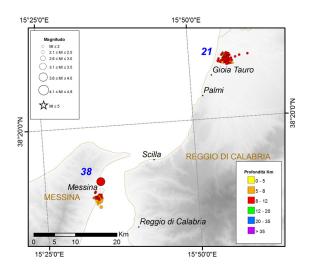
Figura 13 Sequenze sismiche in Appennino meridionale.

Figure 13 Seismic sequences in the southern Apennines.

Una sola sequenza ha interessato nel 2013 il tratto dell'Appennino calabro, in particolare la provincia di Crotone (seq. n° 32 in Figura 14 e Tabella 3). Nel mese di novembre, in meno di sei giorni, sono stati registrati ben settantacinque terremoti tra i comuni di Casabona e Rocca di Neto. La magnitudo massima è stata di $\rm M_L$ 2.9 mentre la profondità media degli eventi è tra le più alte dell'intero anno: oltre 26 Km.

Figura 14 Sequenze sismiche in Appennino meridionale (tratto relativo all'Appennino calabro).

Figure 14 Seismic sequences in the southern Apennines (tract of the Calabrian Apennines).

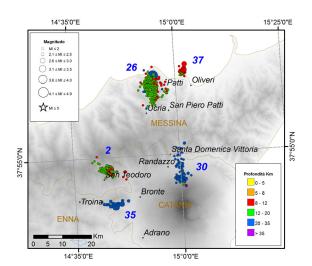

3.2.6 Stretto di Messina e Sicilia nord-orientale

Le ultime due figure mostrano le sequenze registrate nello Stretto di Messina e in Sicilia nordorientale nel corso del 2013.

Nella figura 15 si distingue la sequenza in provincia di Reggio Calabria (seq. n° 21 in Figura 15 e Tabella 3) che conta ottantasette eventi localizzati in poco più di otto giorni (a metà del mese di luglio) ma che fortunatamente ha avuto basse magnitudo (magnitudo massima M_L 2.7) e quella proprio a ridosso della città di Messina iniziata il 23 dicembre 2013 (seq. n° 38 in Figura 15 e Tabella 3). Anche quest'ultima è stata una sequenza piuttosto concentrata dal punto di vista spaziale e temporale (trentasei terremoti in circa sei giorni) ma la magnitudo massima è stata superiore alla precedente (M_L 3.7). Entrambe le sequenze hanno avuto profondità non superiori ai 10 Km.

Figura 15 Sequenze sismiche nell'area dello Stretto di Messina.

Figure 15 Seismic sequences in the area of the Strait of Messina.


Infine le sequenze sismiche in Sicilia nord-orientale nel 2013 sono state ben cinque. Due sono state registrate nell'area del Golfo di Patti (seq. n° 26 e 37 in Figura 16 e Tabella 3). La prima è stata caratterizzata da oltre quattrocento eventi e ha avuto due terremoti di magnitudo massima M_L 4.1 entrambi il 15 di agosto, a due minuti di distanza uno dall'altro. La profondità media della sequenza è stata di circa 16 Km. La seconda sequenza nel Golfo di Patti è caratterizzata da ipocentri più superficiali (circa 11 Km) e cinquantadue terremoti in poco più di quindici giorni. La magnitudo massima è stata di M_L 3.0.

Proseguendo verso sud molto significativa risulta la sequenza relativa all'Etna (seq. n° 30 in Figura 16 e Tabella 3). Centodiciassette terremoti, in meno di una settimana, con una profondità media superiore ai 27 Km. Tutta la sequenza è stata registrata tra il mese di ottobre e quello di novembre con un picco di magnitudo M_L 2.9. Sempre in zona etnea è stata osservata una sequenza a est del comune di Troina (seq. n° 35 in Figura 16 e Tabella 3) che ha contato solo venti terremoti in circa una settimana ma con una magnitudo massima più elevata rispetto alla precedente (M_L 3.4).

L'ultima sequenza descritta è quella a ridosso del comune di San Teodoro in provincia di Messina. Avvenuta all'inizio dell'anno, e durata una quindicina di giorni, risulta caratterizzata da settantacinque eventi. Il 4 gennaio alle 07:50 UTC è stato registrato il terremoto con il valore di magnitudo maggiore M₁ 4.2.

Figura 16 Sequenze sismiche in Sicilia nord-orientale.

Figure 16 Seismic sequences in north-eastern Sicily.

3.3 Sismicità diffusa

Come evidenziato nelle analisi riportate nei BSI degli anni precedenti [Mele et al., 2010; Arcoraci et al., 2012; Battelli et al., 2013; Berardi et al., 2016; Castellano et al., 2017], anche nel 2013 il programma di declustering di Reasenberg [1985] ha evidenziato una concentrazione di eventi sismici in una porzione piuttosto rilevante dell'Appennino centrale registrata praticamente per tutto l'anno. La figura 17 mostra l'area dove è presente questa sismicità diffusa: essa si estende tra le province di Perugia e Macerata a nord, fino a quelle di Rieti e dell'Aquila a sud, lungo un segmento appenninico lungo più di un centinaio di chilometri. L'alto tasso di microsismicità presente in questa porzione dell'Appennino centrale rende molto difficile discriminare le sequenze sismiche dalla sismicità di fondo, anche riducendo i parametri di selezione dell'algoritmo di Reasenberg (2 km in orizzontale e 5 km in verticale di errore sulle coordinate ipocentrali).

Tra i comuni di Assisi, Camerino e Spoleto si concentra il maggior numero di eventi individuato e classificato come sismicità diffusa (1433 eventi), mentre a sud, tra i comuni di Cascia, Amatrice, Leonessa e Pizzoli, la sismicità è decisamente minore (204 terremoti).

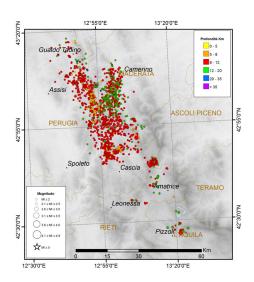


Figura 17 Sismicità diffusa nel 2013 in un settore dell'Appennino centrale, compreso tra le province di Perugia, Macerata, Rieti e L'Aquila.

Figure 17 Widespread seismicity of 2013 in central Apennines between the provinces of Perugia, Macerata, Rieti and L'Aquila.

3.4 Cluster significativi

Nella tabella 4 sono riportati i clusters più significativi avvenuti nel corso del 2013. Essi non sono considerati sequenze sismiche a causa del loro basso numero di repliche (inferiore a 10), nonostante vengano individuati dall'algoritmo di Reasenberg per via della loro magnitudo (M, maggiore o uguale a 3.5).

Da notare il cluster n° 6 avvenuto nel mese di giugno e localizzato in mare davanti al promontorio del Monte Conero; nella stessa zona, nel successivo mese di luglio, verrà localizzata la sequenza sismica n° 23 caratterizzata da un numero di repliche molto più alto (più di 150) e una notevole durata (circa tre mesi).

In genere una buona parte di questi clusters sono eventi sismici caratterizzati da una profondità ipocentrale sub-crostale (n° 4 e 5 in tabella 4) o che avvengono in mare (n° 3, 6, 9 e 13 in tabella 4).

n°	Area epicentrale	n° ev.	Evento di magnitudo massima /.					
			Tempo or.	Lat. N	Lon. E	Prof.	M _L	
1	Monti Nebrodi	2	1303072236	37.975	14.521	6.9	3.7	
2	Buonconvento (Siena)	1	1303180240	43.156	11.454	9.3	3.5	
3	Mar Ionio meridionale	3	1303241547	37.708	16.471	38.2	4.3	
4	Montefeltro	2	1304220351	43.992	12.128	51.8	3.6	
5	Nocera Umbra (Perugia)	1	1305252326	43.087	12.812	62.7	3.6	
6	Conero	4	1306130544	43.515	13.734	8.2	3.9	
7	App. bolognese	2	1306141822	44.281	11.054	20.3	3.5	
8	App. bolognese	9	1306191051	44.419	10.714	28.5	3.5	
9	Isole Eolie (nord Alicudi)	4	1308102304	38.663	14.256	24.2	3.8	
10	Pachino (Siracusa)	1	1308241718	36.714	15.077	8.7	4.0	
11	Marina di Pisa	8	1310191229	43.681	10.264	10.5	3.5	
12	Sud di Voghera (Pavia)	5	1311211036	44.909	9.044	23.2	3.9	
13	Capo Passero	1	1312150357	36.672	15.034	10.5	4.1	

Tabella 4 Elenco dei clusters più significativi del 2013 con almeno un evento di magnitudo $M_L \ge 3.5$ e con un numero di eventi inferiore a 10, non inclusi nella tabella 3. Table 4 List of most significant clusters in 2013 with at least one event of magnitude $M_L \ge 3.5$ and less than 10 events, not included in Table 3.

4. Esplosioni in cava

L'analisi della sismicità nel 2013 ha permesso di individuare due nuove zone caratterizzate da eventi di tipo antropico che vengono riconosciuti dagli analisti in due fasi successive; ad una prima fase di osservazione analitica del sismogramma che permette di individuare caratteristiche proprie di un evento artificiale, segue una analisi di tipo statistico utilizzando il software ZMAP [Wiemer, 2001].

La prima area individuata si trova in Liguria, nell'entroterra di Albenga (SV), vicino al comune di Zuccarello, e come si può vedere in figura 18, gli eventi ricadenti entro 5 km dal comune (una quarantina dal 1° maggio 2012 al 31 maggio 2017) sono localizzati nei pressi di una serie di cave estrattive situate a sud di Zuccarello. Gli orari di questi eventi, mostrati nell'istogramma di figura 19, si concentrano in due fasce orarie: 8-11 e 13-17 GMT, mentre nel resto della giornata la sismicità è praticamente assente; le magnitudo sono comprese tra M₁ 0.5 e 2.0.

Figura 18 *Cluster* di eventi di probabile natura antropica presenti nel BSI 2013 localizzati intorno al comune di Zuccarello, provincia di Savona (immagine elaborata con Google Earth).

Figure 18 Cluster of events of probable anthropic nature in the BSI 2013 located near Zuccarello, province of Savona (processed image with Google Earth).

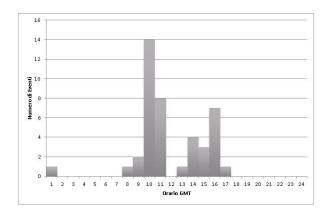


Figura 19 Istogramma della distribuzione oraria degli eventi avvenuti dal 1 maggio 2012 al 31 maggio 2017 nel comune di Zuccarello, provincia di Savona. L'attività serale e notturna è praticamente assente, se comparata con l'attività diurna.

Figure 19 Hourly distribution of events from (2012/05/01 – 2017/05/31) located in quarry areas near Zuccarello (Savona). We find an extremely reduced activity during evening and night hours, if compared to diurnal activity.

La registrazione di uno di questi eventi di origine antropica è mostrata in figura 20. Il sismogramma della componente verticale alle stazioni di MGRO (Montegrosso Pian Latte, Imperia) e RORO (Rocca Rossa, Savona) presenta un segnale monocromatico della durata di circa 10- 15 secondi. L'altra area individuata si trova vicino al comune di Piobbico, in provincia di Pesaro e Urbino (Figura 21); anche in questo caso, a est della cittadina si nota una grande cava dove si concentra la maggior parte della sismicità localizzata. Dal 1° maggio 2012 al 31 maggio 2017, entro 4 km da Piobbico sono stati localizzati 200 eventi sismici, la maggior parte dei quali di natura antropica. Se infatti osserviamo il loro istogramma orario (Figura 22) possiamo notare che a fronte di una sismicità di

fondo presente lungo tutto l'arco della giornata, nella fascia oraria compresa tra le 6 e le 9 GMT c'è un notevole incremento di eventi. Le magnitudo sono comprese tra i valori di 0.2 e 1.8. I sismogrammi (circa 10-15 secondi) della componente verticale di uno di questi eventi di probabile natura antropica, si possono osservare in figura 23, registrati dalle stazioni sismiche di FRON (Frontone, Pesaro e Urbino) e NARO (Abbazia di Naro, Pesaro e Urbino). Le registrazioni sono molto simili a quelle dell'esempio precedente: inizio impulsivo ad alta frequenza e segnale monocromatico.

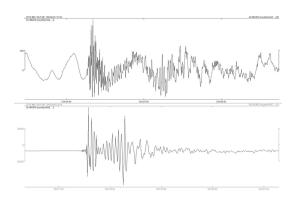


Figura 20 Sismogramma della componente verticale delle stazioni sismiche di MGRO e RORO di una esplosione in cava nei pressi di Zuccarello (provincia di Savona). L'onda P iniziale, ad alta frequenza, è seguita da un segnale monocromatico.

Figure 20 Seismogram (vertical component) of the stations MGRO and RORO due to an explosion in a quarry close to Zuccarello (Savona). The initial P phase is followed by a monochromatic signal.

Figura 21 Eventi di probabile natura antropica localizzati vicino Piobbico (Pesaro e Urbino) (immagine elaborata con Google Earth).

Figure 21 Location of anthropogenic events near Piobbico (Pesaro e Urbino) (processed image with Google Earth).

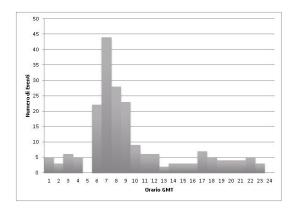
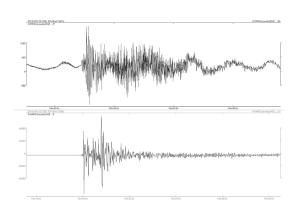



Figura 22 Istogramma della distribuzione oraria degli eventi avvenuti dal 1 maggio 2012 al 31 maggio 2017 vicino una cava estrattiva situata vicino Piobbico, in provincia di Pesaro e Urbino.

Figure 22 Hourly distribution of events from (2012/05/01 - 2017/5/31) located in quarry areas near Piobbico (Pesaro and Urbino).

Figura 23 Sismogramma della componente verticale delle stazioni sismiche di FRON (Pesaro e Urbino) e NARO (Pesaro e Urbino) generato da una esplosione in cava vicino al comune di Piobbico (Pesaro e Urbino).

Figure 23 Seismogram (vertical component) at the stations FRON (PU) and NARO (PU) due to an explosion in a quarry area close to Piobbico, Pesaro and Urbino.

5. Frane

Nel corso del 2013 è stato osservato un fenomeno franoso piuttosto rilevante; la zona interessata è quella a SE di Cortina d'Ampezzo (in provincia di Belluno) e più precisamente il gruppo dolomitico del Sorapis. La frana sembrerebbe aver interessato una porzione di roccia della parete del Ciadin del Laudo, ad un'altezza di circa 3000 m s.l.m., poco prima delle 23 (ora italiana) del 30 settembre.

Si stima che il volume totale del materiale distaccato sia di circa 4700 metri cubi (Figura 24). La causa di queste frane, molto comuni nelle Dolomiti, è probabilmente legata a fenomeni di termoclastismo, cioè alle variazioni di temperatura tra il giorno e la notte che lentamente disgregano la roccia provocandone la rottura fino a dare origine alle frane da crollo.

La frana è stata registrata da alcune stazioni sismiche installate nel settore alpino. Nella figura 25 si possono osservare i sismogrammi della componente verticale di AGOR (Agordo, Belluno)

dell'OGS di Trieste e delle stazioni di FVI (Forni Avoltri, Udine) e STAL (Staligial, Pordenone) della RSN; le tre stazioni distano rispettivamente circa 33, 44 e 47 km dal gruppo dolomitico interessato dal crollo.

Il sismogramma tipico di una frana ha come caratteristiche peculiari l'inizio emergente in quanto generalmente le frane si sviluppano inizialmente in modo lento per poi raggiungere la fase più energetica del crollo nella parte centrale delle registrazioni; lentamente infine segue la fase di messa a riposo. Il sismogramma risulta in questo modo abbastanza simmetrico, a differenza di un terremoto di origine tettonica. Scarso è infine il contenuto di alte frequenze, specialmente nella fase iniziale [Berardi et al., 2016]. Nell'esempio riportato in figura, la durata della registrazione della frana è di circa 40 secondi.

Figura 24 Frana del gruppo del Sorapis vicino Cortina d'Ampezzo (provincia di Belluno) del 30 settembre 2013.

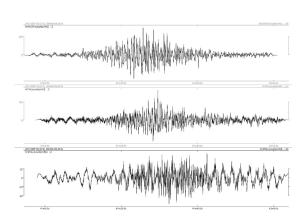


Figura 25 Sismogrammi digitali della componente verticale della stazione sismica AGOR (Agordo, BL) dell'OGS e delle stazioni sismiche FVI (Forni Avoltri, UD) e STAL (Staligial, PN) della RSN dell'INGV, relativi alla frana del gruppo del Sorapis (30 settembre 2013).

Figure 25 Digital record (vertical component) of the landslide of Monte Sorapis (2013/09/30) registered at the OGS station AGOR (Agordo, BL) and of INGV stations FVI (Forni Avoltri, UD) and STAL (Staligial, PN).

6. Sintesi della sismicità analizzata nel 2013

La tabella 5 riassume le caratteristiche principali della sismicità analizzata nel BSI 2013.

Tabella riassuntiva					
Rete Sismica Nazionale	417 stazioni sismiche (vedi tabella 1 e allegato A per dettagli)				
Terremoti localizzati	25180				
Manufactura accessions	M _L 5.2 - M _W 5.1 (evento del 21 gi	ugno della sequenza della Lunigiana)			
Magnitudo massima	M _L 5.0 (evento del 29 dicembre de	ella sequenza del Matese)			
	0.0 ≤ M ≤ 0.9	6925			
	1.0 ≤ M ≤ 1.9	15449			
Distribuzione degli eventi in classi di	2.0 ≤ M ≤ 2.9	2495			
magnitudo	3.0 ≤ M ≤ 3.9	273			
	4.0 ≤ M ≤ 4.9	35			
	M ≥ 5.0	3			
Magnitudo di completezza (M _C)	1.2				
Numero sequenze	41				
Dringingli coguenza	Lunigiana (sequenza nº 17 in tabe	lla 3)			
Principali sequenze	Matese (sequenza n° 41 in tabella 3)				
Eventi di origine antropica	250 ca				

Tabella 5 Sintesi della sismicità analizzata nel BSI 2013. **Table 5** Synthesis of the seismicity in the BSI 2013.

7. Qualità delle localizzazioni

L' analisi della qualità delle localizzazioni del BSI 2013 è stata ottenuta con le stesse modalità e criteri di quelle effettuate negli anni precedenti, così come proposto da Amato e Mele [2008]. I risultati dell'analisi ottenuta sono riportati nella figura 26 dove viene mostrata la mappa delle localizzazioni del BSI 2013 per gli eventi di $M_L \ge 2.0$ che sono rappresentati con un simbolo che è funzione della qualità della localizzazione, della magnitudo e della profondità ipocentrale. Per la stima della qualità della localizzazione di un evento sismico, si utilizza un unico parametro Q = Q1+Q2, variabile da -5 a +5; tale parametro Q è la combinazione di due fattori di qualità, del tutto simili a quelli usati in Hypoinverse-2000 [Klein, 2002]. Questi due fattori sono Q1 (Tabella 6) che si basa sugli errori formali ottenuti al termine della localizzazione (RMS dei residui ed errori orizzontale e verticale della localizzazione) e Q2 (Tabella 7) che considera la geometria

della rete sismica intorno all'epicentro (gap azimutale e distanza della stazione più vicina confrontata con la profondità ipocentrale).

Come già evidenziato nelle precedenti analisi del BSI [Berardi, 2016; Castellano, 2017], le localizzazioni ipocentrali che avvengono nei mari e quelle delle zone di confine hanno un indice di qualità basso, così come la zona del Gargano e della Sicilia occidentale. Per problemi di geometria della rete sismica, la sequenza sismica del Conero (n° 23 in Figura 10 e Tabella 3) risulta non ben vincolata così come l'attività sismica registrata nella zona del crotonese (nº 32 in Figura 14 e Tabella 3). Al contrario, grazie anche all'utilizzo di stazioni temporanee supplementari in zona epicentrale, sono ben vincolate le sequenze sismiche della Lunigiana (n° 17 in Figura 9 e Tabella 3) e del Sorano (n° 5, 15 e 25 in Figura 12 e Tabella 3). Lo stesso discorso non si può fare per la sequenza del Matese (nº 41 in Figura 12 e Tabella 3) in quanto le stazioni della RSN più vicine agli eventi risultavano non funzionanti mentre le stazioni della rete mobile installate in seguito sono diventate operative solo il 31 dicembre.

Qualità Q1	RMS pesato	Errore orizzontale	Errore verticale	Numero pesato di fasi (WNP)	Score Q1
А	< 0.45 s	< 2 km	< 4 km	≥ 3	1.5
В	< 0.90 s	< 5 km	< 10 km	≥ 3	0.5
С	< 1.50 s	< 10 km	< 10 km	≥ 3	-0.5
D	≥ 1.50 s	≥ 10 km	≥ 10 km	< 3	-1.5

Tabella 6 Parametro di qualità Q1 utilizzato per classificare le localizzazioni ipocentrali in funzione della bontà della soluzione e degli errori formali. Le condizioni poste per le classi A, B e C sono da considerare tutte necessarie. Un terremoto ha qualità D se non viene rispettata anche solo una delle condizioni necessarie per l'assegnazione della classe C; quindi ciascuna condizione espressa per la classe D è sufficiente. Il valore WNP (Weighted Number of Phases) viene calcolato come somma dei pesi relativi assegnati alle fasi usate per la localizzazione (ogni peso può assumere valori da 0.0 a 1.0).

Table 6 Quality ranking Q1 used to class hypocenters according to goodness-of-fit and formal errors. The conditions for classes A, B and C are all necessary. An earthquake has quality D if at least one of the conditions necessary to obtain class C is not verified. The WNP value (Weighted Number of Phases) results from the sum of the relative weights (which values range between 0.0 and 1.0) assigned to the associated arrival times.

Qualità Q2	Massimo gap azimutale	Distanza stazione più vicina	Numero pesato di fasi (WNP)	Score Q2
А	< 90°	< 10 km o < Depth	≥ 6	3
В	< 135°	< 20 km o < 2*Depth	≥ 6	1
С	< 180°	< 100 km	≥ 6	-1
D	≥ 180°	≥ 100 km	< 6	-3

Tabella 7 Parametro di qualità Q2 usato per classificare gli ipocentri in funzione della geometria delle stazioni utilizzate per la localizzazione, della distanza dall'epicentro della stazione più vicina (eventualmente paragonata con la profondità dell'ipocentro) e del numero pesato di fasi. Tutte le condizioni per le classi A, B e C sono da considerarsi necessarie per quella classe. Ciascuna condizione per la classe D è sufficiente. Table 7 Quality ranking Q2 used to class hypocenters according to stations geometry, distance of the closest station from the epicenter, and weighted number of phases. All the conditions for classes A, B and C are necessary. An earthquake has quality D if one or more conditions D are verified.

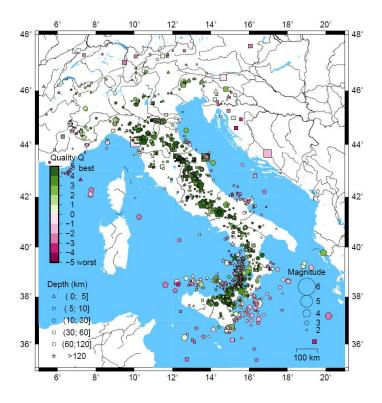


Figura 26 Mappa dei terremoti registrati dalla RSNI nel 2013 con magnitudo $M_L \ge 2.0$. La dimensione dei simboli è proporzionale alla magnitudo, il colore indica la qualità della localizzazione, la forma indica la profondità.

Figure 26 Map of the earthquakes with magnitude $M_L \ge 2.0$, recorded by the RSNI in 2013. The size of the symbols is proportional to the magnitude, the color indicates the quality of the location, the shape indicates the depth.

Analisti del BSI per l'anno 2013

Luca Arcoraci
Patrizia Battelli
Michele Berardi
Corrado Castellano
Giulio Lozzi
Andrea Malagnini
Alessandro Marchetti
Cinzia Melorio
Giorgio Modica
Anna Nardi
Mario Pirro
Antonio Rossi
Sabina Spadoni

Ringraziamenti

Le figure 1, 2 e 26 sono state realizzate con lo strumento grafico GMT [Wessel and Smith, 1991]. Le figure 18 e 21 sono state realizzate con il software *Google Earth*.

Si ringrazia Luisa Valoroso per gli utili suggerimenti che hanno permesso di arricchire il testo finale.

Acknowledgments

Figures 1, 2 and 26 have been realized using the GMT free software [Wessel and Smith, 1991]. Figures 18 and 21 have been realized using the *Google Earth* software.

We thank Luisa Valoroso for the useful suggestions that have allowed us to improve the final text.

Bibliografia

- Amato A., Mele F., (2008). Performance of the INGV National Seismic Network from 1997 to 2007. Annals of Geophysics, 51 (2-3), 417 431.
- Arcoraci L., Battelli P., Castellano C., Marchetti A., Mele F., Nardi A., Pirro M., Rossi A., (2012). *Bollettino Sismico Italiano 2009*. Quaderni di Geofisica, 99, INGV, Roma, 49 pp.
- Battelli P., Arcoraci L., Berardi M., Castellano C., Marchetti A., Mele F., Nardi A., Rossi A., (2013). *Bollettino Sismico Italiano 2010*. Quaderni di Geofisica, 115, INGV, Roma, 52 pp.
- Berardi M., Arcoraci L., Battelli P., Castellano C., Marchetti A., Mele F., Nardi A., Rossi A., (2016). *Bollettino Sismico Italiano 2011*. Quaderni di Geofisica, 134, INGV, Roma, 51 pp.
- Carannante S., Argnani A., Massa M., D'Alema E., Lovati S., Moretti M., Cattaneo M., Augliera P., (2015). The May 20 (MW 6.1) and 29 (MW 6.0), 2012, Emilia (Po Plain, northern Italy) earthquakes: New seismotectonic implications from subsurface geology and high-quality hypocenter location. Tectonophysics, 655, 2015, 107-123, doi: 10.1016/j.tecto.2015.05.015.
- Castellano C., Arcoraci L., Battelli P., Berardi M., Marchetti A., Margheriti L., Mele F., Nardi A., Rossi A., (2017). *Bollettino Sismico Italiano* 2012. Quaderni di Geofisica, 139, INGV, Roma, 64 pp.
- Chiarabba C., De Gori P., Speranza F., (2008). The Southern Tyrrhenian Subduction Zone: Deep geometry, magmatism and Plio-Pleistocene evolution. Earth and Planet. Sci. Lett., 268, 408-423.
- Chiarabba C., De Gori P., Improta L., Lucente F.P., Moretti M., Govoni A., Di Bona M., Margheriti L., Marchetti A., Nardi A., (2014). Frontal compression along the Apennines thrust system: The Emilia 2012 example from seismicity to crustal structure. J. Geodyn., doi: 10.1016/j.jog.2014.09.003.
- Chiaraluce L., Amato A., Carannante S., Castelli V., Cattaneo M., Cocco M., Collettini C., D'Alema E., Di Stefano R., Latorre D., Marzorati S., Mirabella F., Monachesi G., Piccinini D., Nardi A., Piersanti A., Stramondo S., Valoroso L., (2014). *The Alto Tiberina Near Fault Observatory (northern Apennines, Italy).* Annals of Geophysics, 57, 3, 2014, S0327. doi: 10.4401/ag-6426.
- Console R., De Simoni B., Di Sanza A., (1988). Riesame della relazione magnitudo-durata. Atti VII° Convegno. G.N.G.T.S., Roma, 51-62.
- De Gori P., Margheriti L., Lucente F.P., Govoni A., Moretti M., Pastori M., Marchetti A., Di Giovambattista R., Anselmi M., De Luca P., Nardi A., Piana Agostinetti N., Latorre D., Piccinini D., Passarelli L., Chiarabba C., (2014). 2010-2014 seismic activity images the activated fault system in the Pollino area, at the Apennines-Calabrian arc boundary region. 33° Conv. Naz. GNGTS, Novembre 2014.
- De Gori P., Moretti M., Margheriti L., Cecere G., Govoni A., Criscuoli F., Mazza S., Lauciani V., D'ambrosio C., Castagnozzi A., Memmolo A., Migliari F., Minichiello F., Cardinale V., Falco L., Zarrilli L., De Luca G., Abruzzese L., Delladio A., Scognamiglio L., Michelini A., (2014). *Le attività di Pronto Intervento Sismico dell'INGV a seguito del terremoto del 29 dicembre 2013 (area del Matese)*. Rapporti Tecnici INGV, 281, 24 pp.

- Di Luccio F., Chiodini G., Caliro S., Cardellini C., Convertito V., Pino N.A., Tolomei C., Ventura G. (2018). *Seismic signature of active intrusions in mountain chains*. Sci. Adv., 4: e1701825.
- Dreger D.S., Helmberger D.V., (1993). *Determination of Source Parameters at Regional Distances with Single Station or Sparse Network Data*. Journ. Geophys. Res., 98, 8107-8125.
- Dreger D.S., (2003). *TDMT_INV: Time Domain Seismic Moment Tensor INVersion*. In: W.K. Lee, H. Kanamori, P.C. Jennings, C. Kisslinger (Eds). International Handbook of Earthquake and Engineering Seismology, Vol. 81B, 1627.
- Frepoli A., Cimini G.B., De Gori P., De Luca G., Marchetti A., Monna S., Montuori C., Pagliuca N.M., (2017). Seismic sequences and swarms in the Latium-Abruzzo-Molise Apennines (central Italy): New observations and analysis from a dense monitoring of the recent activity. Tectonophysics, https://doi.org/10.1016/j.tecto.2017.05.026.
- Govoni A., Marchetti A., De Gori P., Di Bona M., Lucente F.P., Improta L., Chiarabba C., Nardi A., Margheriti L., Agostinetti N.P., Di Giovambattista R., Latorre D., Anselmi, M., Ciaccio M.G., Moretti M., Castellano C., Piccinini D., (2014). The 2012 Emilia seismic sequence (Northern Italy): Imaging the thrust fault system by accurate aftershock location. Tectonophysics, 622, 44-55.
- Hutton L.K. e Boore M., (1987). *The ML scale in southern California*. Bull. Seism. Soc. Am., 77, 2074-2094. Huber P.J. (1981). *Robust statistics*. Wiley, N.Y.
- ISIDe Working Group (2016) version 1.0, doi: 10.13127/ISIDe.
- Kanamori H., Anderson D.L., (1975). *Theoretical basis of some empirical relations in seismology*. Bull. Seism. Soc. Am., 65, 1073-1095.
- Klein F.W., (2002). User's Guide to HYPOINVERSE-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes. U.S. Geological Survey Open-File Report 02.171, 123 pp.
- Margheriti L., Amato A., Braun T., Cecere G., D'Ambrosio C., De Gori P., Delladio A., Gervasi A., Govoni A., Guerra I., Lucente F.P., Moretti M., Selvaggi G., (2013). *Emergenza nell'area del Pollino: le attività della Rete Sismica Mobile*. Rapporti Tecnici INGV, 252, 35 pp.
- Margheriti L., Moretti M., Pasta M., Chiaraluce L., Frepoli A., Piccinini D., Piccolini U., Colasanti G., Criscuoli F., De Gori P., Ferretti G., Franceschi D., Giandomenico E., Giovani L., Govoni A., Marchetti A., Mazza S., Pavan M., Scafidi D., Silvestri M., Spallarossa D., Pintore S., Lauciani V., Fiaschi A., Turin C., (2014). Il terremoto del 21 giugno 2013 in Lunigiana. Le attività del coordinamento Sismiko. Rapporti Tecnici INGV, 268, 34 pp.
- Mele F., Arcoraci L., Battelli P., Berardi M., Castellano C., Lozzi G., Marchetti A., Nardi A., Pirro M., Rossi A., (2010). *Bollettino Sismico Italiano 2008*. Quaderni di Geofisica, 85, INGV, Roma, 45 pp.
- Pezzo G., Merryman Boncori J.P., Atzori S., Piccinini D., Antonioli A., Salvi S., (2014). The 2013 Lunigiana (Central Italy) earthquake: Seismic source analysis from DInSAR and seismological data, and geodynamical implications for the northern Apennines. Tectonophysics, http://dx.doi.org/10.1016/j.tecto.2014.09.005.
- Reasenberg P. (1985). Second-Order Moment of Central California Seismicity, 1969-1982. J. Geophys. Res., 90, 5479-5495.
- Scognamiglio L., Tinti E., Michelini A., (2009). *Real-time determination of seismic moment tensor for italian region*. Bull. Seism. Soc. of Am., Vol. 99, No. 4, 2223-2242, doi: 10.1785/0120080104.
- Scognamiglio L., Tinti E., Michelini A., Dreger D.S., Cirella A., Cocco M., Mazza S., Piatanesi A., (2010). Fast Determination of Moment Tensors and Rupture History: What Has Been Learned from the 6 April 2009 L'Aquila Earthquake Sequence. Seismol. Res. Lett., 81(6), 892-906.
- Scognamiglio L., Margheriti L., Mele F.M., Tinti E., Bono A., De Gori P., Lauciani V., Lucente F.P., Mandiello A., Marcocci C., Mazza S., Pintore S., Quintiliani M., (2012). *The 2012 Pianura Padana Emiliana seismic sequence: locations, moment tensors and magnitudes.* Annals of Geophysics 55, 4, doi: 10.4401/ag-6159, 549-559.
- Tertulliani A., Arcoraci L., Michele B., Bernardini F., Brizuela B., Castellano C., Del Mese S., Ercolani E., Graziani L., Maramai A., Rossi A., Sbarra M., Vecchi M., (2012). *The Emilia 2012 sequence: a macroseismic survey*. Annals of Geophysics. 55, 4, 679-687.

- Valoroso L., Chiaraluce L., Di Stefano R. & Monachesi G., (2017). Mixed-mode slip behavior of the Altotiberina low-angle normal fault system (Northern Apennines, Italy) through high-resolution earthquake locations and repeating events. Journal Geophysical Research: Solid Earth, 122. https://doi.org/10.1002/2017JB014607.
- Wessel P. e Smith W.H.F., (1991). Free software helps map and display data. Eos Trans. AGU, 72 (441), 445-446.
- Wiemer S., (2001). A software package to analyze seismicity: ZMAP. Seismol. Res. Lett., 72, 373-382.
- Wiemer S., Baer M., (2000). Mapping and Removing Quarry Blast Events from Seismicity Catalogs. Bull. Seismol. Soc. Am., 90 (2), 525-530.

ALLEGATO A

Stazioni della Rete Sismica Nazionale operative nel 2013

Sigla	Denominazione	Prov.	Regione	Lat.	Long.	н	veloc.	accel.	rete	aperte 2013	Dismesse 2013
ABSI	Aberst.ckl (Sarntal)	BZ	Trentino Alto Adige	46,7285	11,3205	1801	STS2-120s		INGV-SI		
ACER	Acerenza	PZ	Basilicata	40,7867	15,9427	690	Trillium-40s	Episensor	INGV		
АСОМ	Acomizza	UD	Friuli Venezia Giulia	46,5480	13,5137	1788	Trillium-40s		OGS-NI		
AGOR	Agordo	BL	Veneto	46,2829	12,0472	631	STS2-120s		OGS-NI		
AGST	Augusta	SR	Sicilia	37,2565	15,2271	70	Le3D-5s		INGV		
AIO	Antillo	ME	Sicilia	37,9712	15,2330	751	Trillium-40s		MedNet		
AJAC	Ajaccio	(F)	Corsica	41,9279	8,7630	27	CMG-3ESP		FR	11/06/13	
ALJA	Alia	PA	Sicilia	37,7490	13,7537	700	Trillium-40s		INGV		
AMUR	Altamura	ВА	Puglia	40,9071	16,6041	443	Trillium-40s		INGV		
AOI	Monte Conero	AN	Marche	43,5502	13,6020	530	Trillium-40s		INGV		
APPI	Appiano	BZ	Trentino Alto Adige	46,4787	11,2281	1056	Le3D-5s		INGV		
AQT1	Arquata del Tronto	AP	Marche	42,7738	13,2935	770	Le3D-1s		INGV		
AQU	L'Aquila	AQ	Abruzzo	42,3539	13,4019	729	STS2-120s	Episensor	MedNet		
ARCI	Arcidosso	GR	Toscana	42,8519	11,4754	1080	Trillium-40s	Episensor	INGV		
ARRO	Arrone	TR	Umbria	42,5792	12,7657	253	Le3D-5s		INGV		
ARSA	Arzberg	(A)	Austria	47,2505	15,5232	577	STS2-120s		AO		
ARVD	Arcevia 2	AN	Marche	43,4981	12,9415	461	Trillium-40s		INGV		
ASOL	Asolo	TV	Veneto	45,8003	11,9023	181		Episensor	INGV		
ASQU	Asqua	AR	Toscana	43,7967	11,7893	860	Trillium- 120s	Episensor	INGV		
ASSB	Assisi San Benedetto	PG	Umbria	43,0426	12,6587	734	Trillium-40s		INGV		
ATBU	Serra di Burano	PG	Umbria	43,4757	12,5483	1000	Le3D-5s		INGV		
ATCA	Cantone	PG	Umbria	43,5659	12,2661	688	Trillium-40s		INGV		27/09/13
ATCC	Casa Castalda	PG	Umbria	43,1851	12,6400	557	Le3D-5s		INGV		
ATFO	Monte Foce - Gubbio	PG	Umbria	43,3666	12,5715	960	Trillium-40s		INGV		
ATLO	Montelovesco	PG	Umbria	43,3152	12,4073	584	Le3D-5s	Episensor	INGV		
ATMC	Monte Cedrone	PG	Umbria	43,4469	12,1928	740	Le3D-5s		INGV		
ATMI	Monte Miggiano	PG	Umbria	43,3342	12,2680	581	Trillium-40s		INGV		
ATN	Antennamare	ME	Sicilia	38,1595	15,4647	1130	Le3D-20s		INGV		
ATPC	Poggio Castellaccio	PG	Umbria	43,4807	12,4570	810	Trillium-40s	Episensor	INGV		
ATPI	Pietralunga (Aviosuperficie)	PG	Umbria	43,4507	12,4022	694	Le3D-5s		INGV		
ATRE	Renzetti	PG	Umbria	43,5462	12,2639	462	Trillium-40s		INGV	17/09/13	
ATSC	Scheggia	PG	Umbria	43,4240	12,6864	895	Le3D-1s		INGV		
ATTE	Monte Tezio	PG	Umbria	43,1979	12,3536	929	Trillium-40s		INGV		
ATVA	Monte Valcinella	PG	Umbria	43,2786	12,2853	605	Le3D-5s		INGV		
ATVO	Monte Valentino	PG	Umbria	42,3821	12,4066	638	Trillium-40s		INGV		
BADI	Badiali	PE	Abruzzo	43,5097	12,2443	430	Le3D-5s		INGV		
BAG8	Bagolino	BS	Lombardia	45,8228	10,4664	807		Episensor	INGV		
BAT1^	Gubbio	PG	Umbria	43,3816	12,4357	643	Malin/Le3D- 5s		INGV		
BAT2^	Pietralunga	PG	Umbria	43,3704	12,4094	691	Malin/Le3D- 5s		INGV		
BAT3^	Pietralunga	PG	Umbria	43,4013	12,4103	580	Malin		INGV		
BDI	Bagni di Lucca	LU	Toscana	44,0624	10,5970	830	Trillium-40s	Episensor	INGV		
BERNI	Berninapass	(CH)	Svizzera	46,4134	10,0231	2310	STS2-120s		ETH		
внв	Bricherasio	ТО	Piemonte	44,8352	7,2633	585	Trillium-40s		INGV-IG		
BIOG	Camporeale (Ariano Irpino)	AV	Campania	41,1999	15,1326	623	Trillium- 120s	Episensor	INGV		
BLLA	Bellaria	RN	Emilia Romagna	44,1429	12,4703	1	Le3D-1s		INGV		

BLY	Banja Luka	(BiH)	Bosnia- Herzegovin	44,7488	17,1839	256	STS2-120s	Episensor	MedNet		
BNALP	Bannalp	(CH)	a Svizzera	46,8705	8,4250	1540	STS2-120s		ETH		
BNI	Bardonecchia	TO	Piemonte	45,0528	6,6763	1407	STS2-120s	Episensor	MedNet		
ВОВ	Bobbio	PC	Emilia	44,7679	9,4478	910	Trillium-40s	Episensor	INGV		
BOJS	Bojanci	(SL)	Romagna Slovenia	45,5043	15,2518	252	STS2-3G-		SL		
BORM	Bormio	SO SO	Lombardia	46,4694	10,3764	1235	120s	Episensor	INGV		
BOSI	Bozen-Zivilschutz	BZ	Trentino	46,4952	11,3185	242	STS2-120s	Ерізспізої	INGV-SI		
вотт	Zentrale Botticino	BS	Alto Adige Lombardia	45,5494	10,3095	200	0.02 220	Episensor	INGV		
BRES	Bressanone	BZ	Trentino	46,6987	11,7341	2454	Le3D-1s		INGV		
BRIS	Brisighella	RA	Alto Adige Emilia	44,2245	11,7666	260	Trillium-40s	Episensor	INGV		
BRMO	Bormio	SO	Romagna Lombardia	46,4760	10,3731	1380	Trillium-40s	Ерізспзоі	INGV		
BSSO	Busso	СВ	Molise	41,5461	14,5938	1010	Trillium-40s	Episensor	INGV		
BULG	Camerota - Monte	SA	Campania	40,0783	15,3776	815	Trillium-40s	Episensor	INGV		
CADA	Bulgheria Capodarco	AP	Marche	43,1942	13,7614	148		Episensor	INGV		
CAFE	Carife	AV	Campania	41,0280	15,2366	1070	Trillium-40s	Episensor	INGV		
CAFI	Castiglion Fiorentino	AR	Toscana	43,3292	11,9663	547	Trillium-40s	Episensor	INGV		
CAFR	Castel Frentano	СН	Abruzzo	42,2273	14,3470	250	Trillium-40s	Episensor	INGV		
CAGR	Agira	EN	Sicilia	37,6220	14,4999	548	Trillium-40s		INGV		
САМР	Campotosto	AQ	Abruzzo	42,5358	13,4090	1283	Trillium- 120s		INGV		
CAPR	Capriolo	BS	Lombardia	45,6372	9,9345	215	1203	Episensor	INGV		
CAR1	Carolei	CS	Calabria	39,2534	16,2114	680	Trillium-40s	Episensor	INGV		
CARD	Cardoso	LU	Toscana	44,0260	10,4821	380	Trillium-40s		INGV-IG	06/02/13	
CARE	Lago Careser	TN	Trentino Alto Adige	46,4252	10,6945	2605		CMG-5T	ST	11/11/13	
CASP	Castiglione della Pescaia	GR	Toscana	42,7908	10,8652	390	Trillium-40s	Episensor	INGV		
CAVE	Cavezzo	MD	Emilia Romagna	44,8658	11,0031	18	Trillium- 120s		INGV		
CAVT	Castelvetrano 2	TP	Sicilia	37,6788	12,7556	158	SS1-Ranger		INGV		
CDCA^	Città Di Castello	PG	Umbria	43,4584	12,2336	50	Le3D-1s	Episensor	INGV		
CDRU	Ottati - Civita Di Ruta	SA	Campania	40,4896	15,3046	1057	Trillium-40s	Episensor	INGV		
CEL	Celeste	RC	Calabria	38,2603	15,8939	702	STS2-120s	Episensor	MedNet		
CELB	San Piero in Campo - Elba	LI	Toscana	42,7466	10,2107	742	Trillium-40s		INGV		
CELI	Celico	CS	Calabria	39,4027	16,5088	1290	Trillium- 120s	Episensor	INGV		
CERA	Filignano	IS	Molise	41,5978	14,0183	800	Trillium-40s	Episensor	INGV		
CERT	Cerreto Laziale	RM	Lazio	41,9490	12,9818	773	Trillium- 120s		INGV		
CESI	Cesi - Serravalle di Chienti	МС	Marche	43,0049	12,9046	840	Trillium-40s		INGV		
CESX^	Cesi	TR	Umbria	42,6100	12,5800	380	Trillium- 240s		INGV		
CET2	Cetraro	CS	Calabria	39,5288	15,9546	675	Trillium-40s		INGV		
CGL	Punta Serpeddì	CA	Sardegna	39,3660	9,2960	1050	Le3D-5s		INGV		
CGRP	Cima Grappa	PN	Friuli Venezia Giulia	45,8807	11,8047	1757	STS2-120s	Episensor	OGS-NI		
CIGN	Sant'Elia a Pianisi	СВ	Molise	41,6542	14,9050	350	Trillium-40s		INGV		
CIMA	Civitanova Marche	AN	Marche	43,3053	13,6701	163		Episensor	INGV		
CING	Cingoli	MC	Marche	43,3756	13,1954	626	Trillium-40s	Episensor	INGV		
CIRO	Champorcer	AO	Valle d'Aosta	45,6019	7,5682	2516	Trillium-40s		INGV-IG		
CLTA	Licata	AG	Sicilia	37,1580	13,9620	246	Trillium-40s		INGV		
CLTB	Caltabellotta	AG	Sicilia	37,5786	13,2156	957	STS2-120s		MedNet		

CMDO	Carratta Da	FF	Emilia	44 5000	11 0056]	T.::!!: 40-	F-:	TNCV		
СМРО	Campotto Po	FE	Romagna	44,5808	11,8056	2	Trillium-40s	Episensor	INGV		
CMPR	Campora	SA	Campania	40,3181	15,3030	732	Trillium-40s	Episensor	INGV		
CNCS	Concesio	BS	Lombardia	45,6060	10,2170	126		Episensor	INGV		
COR1	Corinaldo	AN	Marche	43,6318	13,0000	237	Le3D-1s		INGV		
CORL	Corleone	PA	Sicilia	37,8943	13,3038	660	Trillium-40s		INGV		
CPGN	Carpegna	PU	Marche	43,8011	12,3205	1400	Le3D-1s	Episensor	INGV		
CRAC	Craco Caprese	MT	Basilicata	40,3650	16,4350	384	Le3D-5s		INGV		
CRE	Michelangelo	AR	Toscana	43,6189	11,9517	1215	Trillium-40s		INGV		
CRJA	Costa Raja	TP	Sicilia	37,8016	13,0043	560	SS1-Ranger		INGV		
CRM1	Castelraimondo	MC	Marche	43,2101	13,0580	302		SF3000	INGV		
CRMI	Carmignano	PO	Toscana	43,7900	10,9700	490	Trillium-40s	Episensor	INGV		
CRND	Cornuda	TV	Veneto	45,8361	12,0131	159		Episensor	INGV		
CSNT	Castellina in Chianti	SI	Toscana	43,4731	11,2902	636	Trillium-40s		INGV		
CSP1	Cessapalombo	МС	Marche	43,0918	13,2048	1188	Le3D-1s		INGV		
СТІ	Castello Tesino	TN	Trentino Alto Adige	46,0482	11,6497	1180	Trillium- 120s		INGV		
CTL8	Castelleone	CR	Lombardia	45,2763	9,7622	60	Malin	Episensor	INGV		
cuc	Castrocucco	CS	Calabria	39,9938	15,8155	637	STS2-120s		MedNet		
DAVO X	Davos	(CH)	Svizzera	46,7806	9,8797	1830	STS2-120s		ETH		
DGI	Dorgali Grotta	NU	Sardegna	40,3180	9,6067	354	Trillium-40s		INGV		
DIX	Ispinigoli Grand Dixence	(CH)	Svizzera	46,0805	7,4040	2400	STS2-120s		ETH		
	San Damiano		Piemonte	,	,						
DOI	Macra	CN		44,5042	7,2467	1039	Trillium-40s		INGV		
ECNV	Catenanuova Castiglione di	СТ	Sicilia	37,5956	14,7125	484	Trillium-40s		INGV-CT		
ECTS	Sicilia	СТ	Sicilia	37,8820	15,1210	681	Le3D-1s		INGV		
EL6	Elcito	MC	Marche	43,3293	13,1017	978	Le3D-1s		INGV		
EMSG	Parco Etna (Il Castello)	СТ	Sicilia	37,8208	14,9468	1435	Trillium-40s		INGV-CT	30/10/13	
EMV	Vieux Emosson	(CH)	Svizzera	46,0632	6,8989	2210	STS2-120s		ETH		
ENIC	Nicolosi	СТ	Sicilia	37,6314	15,0216	877	Trillium-40s		INGV-CT	15/03/13	
ENR	Entracque	CN	Piemonte	44,2267	7,4203	1040	Trillium-40s		INGV-IG		
EPOZ	Pozzillo	СТ	Sicilia	37,6719	15,1885	124	Trillium-40s		INGV-CT	15/03/13	
EPZF	Pizzo Felice	СТ	Sicilia	37,8240	14,8570	1140	Trillium-40s		INGV-CT	14/11/13	
EQUI	Equi Terme	MS	Toscana	44,1660	10,1530	350	CMG40T-60s		INGV-IG		
ERBM	Eremo di Bismantova	RE	Emilia Romagna	44,4195	10,4127	933	Le3D-5s		INGV		
ESLN	Serra La Nave	СТ	Sicilia	37,6934	14,9744	1787	Trillium-40s		INGV		
ESML	Santa Maria di Licodia	СТ	Sicilia	37,6181	14,8794	417	Trillium-40s		INGV-CT	15/03/13	
FAEN	Faenza	RA	Emilia Romagna	44,2895	11,8770	41	KS-2000		INGV		
FAGN	Fagnano	AQ	Abruzzo	42,2657	13,5838	761	Trillium-40s		INGV		
FAVR	Favara 2	AG	Sicilia	37,2671	13,6669	258	Trillium-40s		INGV		
FDMO	Fiordimonte	МС	Marche	43,0365	13,0873	550	Trillium-		INGV		
FEMA	Monte Fema	MC	Marche	42,9621	13,0498	1370	240s	Episensor	INGV		
FERB^	Ferrara (Casaglia)	FE	Emilia	44,9000	11,5400	-132	CMG-3TB	CMG-5TB	OGS-NI		
FERS	Ferrara (Casaglia)	FE	Romagna Emilia	44,9035	11,5406	3	31.0 310	Episensor	INGV	08/02/13	
FIAM	Fiamignano	RI	Romagna Lazio	42,2680	13,1172	1070	Trillium-	Episensor	INGV	30,02/13	
FINB	Finale Ligure	SV	Lazio	44,1775	8,3253	85	120s Trillium-40s	Lpiserisur	INGV		
FIR		FI	Toscana	43,7744	11,2551		Trillium-	Eniconco	INGV		
	Firenze Minerbio - Fondo		Emilia	,	·	40	240s	Episensor			
FIU	Fiumicello	ВО	Romagna	44,6403	11,4917	12	Le3D-5s		INGV		
FIU1	Fiuminata	MC	Marche	43,1886	12,9316	479		SF3000	INGV		

	T	1		I	I		I	I	1	1	I
FIVI^	Fivizzano	MS	Toscana	44,2393	10,1273	380		Episensor	INGV-IG		
FNVD	Fontana Vidola	ВО	Emilia Romagna	44,1678	11,1229	950	Trillium-40s	Episensor	INGV		
FOSD	Fosdinovo	MS	Toscana	44,1076	9,9971	60		Episensor	INGV-IG	23/06/13	04/09/13
FOSV	Fossato di Vico	PG	Umbria	43,2948	12,7612	559	Le3D-5s		INGV		
FRE8	Fregona	TV	Veneto	46,0150	12,3552	543		Episensor	INGV		
FRES	Fresagrandinaria	СН	Abruzzo	41,9735	14,6693	414	Trillium-40s		INGV		
FRON	Frontone	PU	Marche	43,5178	12,7257	515	Le3D-5s		INGV		
FROS	Frosini	SI	Toscana	43,2097	11,1562	432	Trillium-40s		INGV		
FSSB	Fossombrone	PS	Marche	43,6931	12,7771	523	Trillium-40s		INGV		
FUORN	Ofenpass	(CH)	Svizzera	46,6202	10,2635	2335	STS2-120s		ETH		
FUSIO	Fusio	(CH)	Svizzera	46,4549	8,6631	1480	STS2-120s		ETH		
FVI	Forni Avoltri	UD	Friuli Venezia Giulia	46,5966	12,7804	1024	CMG40T-30s		INGV		
GAG1	Gagliole	МС	Marche	43,2381	13,0674	484		SF3000	INGV		
GAGG	Gaggia	TN	Trentino Alto Adige	46,0835	10,9587	1617		Episensor	ST	19/11/13	
GALF	Gagliano Castelferrato	EN	Sicilia	37,7107	14,5665	740	Trillium-40s		INGV		
GATE	Gambatesa	СВ	Molise	41,5131	14,9102	487	Trillium-40s	Episensor	INGV		
GBOS	Grotte Bossea	CN	Piemonte	44,2416	7,8399	897	Trillium-	•	INGV-IG		
GEPF	Gemona - Piazza del Ferro	UD	Friuli Venezia	46,2750	13,1386	12	240s CMG40T-30s		INGV-RF		
GIB	Gibilmanna	PA	Giulia Sicilia	37,9903	14,0262	1005	Trillium- 120s		INGV		
GIMEL	St Georges-Gimel	(CH)	Svizzera	46,5347	6,2658	1130	STS2-120s		ETH		
GIO	Monte San	СТ	Sicilia	37,5667	15,1083	200	L4-C-3D		INGV		13/03/13
GIUL	Gregorio Giuliano Di Roma	FR	Lazio	41,5583	13,2546	566	Trillium-40s		INGV		
GMB	Gambarie	RC	Calabria	38,1681	15,8289	1300	Le3D-20s		INGV		
GORR	Gorreto	GE	Liguria	44,6071	9,2926	609	Trillium-40s		INGV-IG		
GRAM	Graiana	PR	Emilia	44,4913	10,0658	850	CMG40T-60s		INGV-IG		
GRI	Girifalco	CZ	Romagna Calabria	·	-		L4-C-3D		INGV		
GROG	Isola di Gorgona	LI	Toscana	43,4262	9,8920	118	Trillium-40s	Episensor	INGV		
GUAR	Guarcino	FR	Lazio	41,7945	13,3123	741	Trillium-40s	Ерізспізої	INGV		
GUMA	Gualdo di	MC	Marche	43,0627	13,3352	574	Trillium-		INGV		
	Macerata				15,1550		120s Trillium-40s				
HAGA HAVL	Brucoli Avola	CT SR	Sicilia Sicilia	37,2850 36,9596	15,1220	126 502	Trillium-40s		INGV-CT		
HBSP	Bosco San Pietro	CT	Sicilia	37,1270	14,4920	255	Trillium-40s		INGV-CT		
HCRL	Carlentini	SR	Sicilia	37,1270	15,0325	240	Trillium-40s		INGV-C1		
HLNI	Lentini - Masseria	SR	Sicilia	37,2831	14,8720		Trillium-40s		INGV		
	Cucco			,		146					
HMDC	Modica	RG	Sicilia	36,9590	14,7831	595	Trillium-40s		INGV		
HPAC	Pachino	SR	Sicilia	36,7085	15,0372	70	Trillium-40s		INGV-CT		
HVZN	Vizzini	CT	Sicilia	37,1783	14,7155	787	Trillium-40s		INGV-CT		
IACL	Alicudi	RC ME	Calabria Sicilia	38,5330	14,3550 14,5753	145 277	Trillium-40s Trillium-40s		INGV-CT		
IFIL	Filicudi	ME ME	Sicilia	38,5642 38,4457	14,5753	283	Trillium-40s		INGV		
IMI	Lipari			43,9105	7,8932		Trillium-40s		INGV		
	Imperia	IM	Liguria Emilia		11,7425	840	Le3D-1s	Eniconcer			
IMOL	Imola	ВО	Romagna	44,3596		27		Episensor	INGV		
INTR	Introdacqua Stromboli (Oss.	AQ	Abruzzo	42,0115	13,9046	924	Trillium-40s	Episensor	INGV		
IST3	Fiorentini)	ME	Sicilia	38,7992	15,2304	255	Trillium-40s		INGV-CT		
ISTR	Ginostra	ME	Sicilia	38,7866	15,1918	103	Trillium-40s		INGV		

IVPL	Vulcano Piano	ME	Sicilia	38,3763	14,9801	486	Trillium-40s		INGV		
JOPP	Joppolo	VV	Calabria	38,6068	15,8856	500	Trillium-40s	Episensor	INGV		
KEK	Kerkira	(GR)	Grecia	39,7130	19,7987	280	STS2-120s	F	HL-NOA		
KOSI	Kohlern-Titschen	BZ	Trentino	46,4630	11,3778	1604	STS2-120s		INGV-SI		
LADO	San Nicola	KR	Alto Adige Calabria	39,2840	16,9795	488	Le3D-5s		INGV-CL		
LATB^	dell'Alto Latina	LT	Lazio	41,4939	12,9624	0	Malin		INGV		
LATE	Latera	VT	Lazio	42,6137	11,8040	610	Trillium-40s	Episensor	INGV		
LAV9	Lanuvio	RM	Lazio	41,6778	12,6989	300	Trillium-40s	Episensor	INGV		
LEOD	Capriano del Colle	BS	Lombardia	45,4582	10,1234	92	1111111111-403	Episensor	INGV		
LISA	Isola di Linosa	AG	Sicilia	35,8716	12,8634	63	L4-C	Ерізсіізоі	INGV	11/02/13	
LJU	Ljubljana	(SL)	Slovenia	46,0438	14,5278	396	CMG40T-30s		SL	11/02/13	
LMD	Lutirano	FI	Toscana	44,0775	11,7073	450	Trillium-		INGV	21/10/13	
				,	,		240s			21/10/13	
LNSS	Leonessa Lampedusa (Capo	RI	Lazio	42,6029	13,0403	1155	Trillium-40s		INGV		
LPDG	Grecale)	AG	Sicilia	35,5183	12,6302	50	Trillium-40s		INGV		
LPEL	Lama dei Peligni	СН	Abruzzo	42,0468	14,1832	760	Trillium-40s		INGV		
LSD	Lago Serrù - Ceresole Reale	ТО	Piemonte	45,4595	7,1343	2285	Trillium-40s	Episensor	INGV-IG		
LTRZ	Laterza	TA	Puglia	40,6033	16,8191	381	Le3D-5s		INGV		
LUSI	Drena	TN	Trentino Alto Adige	45,9595	10,9436	860	STS2-120s		INGV-SI		
МА9	Marino	RM	Lazio	41,7702	12,6593	340	Trillium- 240s		INGV		
MABI	Malga Bissina	TN	Trentino Alto Adige	46,0549	10,5140	1853	Trillium-40s		INGV		
MAGA	Magasa	BS	Lombardia	45,7753	10,6286	1265	Trillium-40s		INGV		
MAIM	Mastiano	LU	Toscana	43,9142	10,4915	200	Trillium-40s		INGV-IG		
MAON	Monte Argentario	GR	Toscana	42,4283	11,1309	237	Trillium-40s	Episensor	INGV		
MATE	Matera	MT	Basilicata	40,6491	16,7044	494	STS2-120s		GEOFON		
MCEL	Tramutola - Monticello	PZ	Basilicata	40,3249	15,8019	960	Trillium-40s	Episensor	INGV		
MCIV	Monte Civitella	GR	Toscana	42,7786	11,6765	790	Trillium-40s		INGV		
MCPD	Capo Orlando	ME	Sicilia	38,1199	14,7310	199	Trillium-40s		INGV-CT		
MCRV	Calabritto - Monte Cervialto	AV	Campania	40,7826	15,1684	1191	Trillium-40s	Episensor	INGV		
MCSR	Castroreale	ME	Sicilia	38,0646	15,2301	1064	Trillium-40s		INGV		
мст	Montecammarata	AG	Sicilia	37,6186	13,6076	1558	Le3D-20s		INGV		
MDAR	Monte Daria	MC	Marche	43,1927	13,1427	940		Episensor	INGV		
MDI	Monte di Nese	BG	Lombardia	45,7697	9,7160	954	Trillium-40s	Episensor	INGV		
MELA	Melanico-S. Croce di Magliano	СВ	Molise	41,7059	15,1270	115	Trillium-40s	Episensor	INGV		
MERA	Merate	LC	Lombardia	45,7054	9,4291	338		Episensor	INGV		
MESG	Mesagne	BR	Puglia	42,5894	17,8504	78	Trillium-40s		INGV		
MEU	Monte Lauro	SR	Sicilia	37,1111	14,8300	986	L4-C-3D		INGV		
MFNL	Monte Finestrelle	TP	Sicilia	37,7908	12,9224	677	SS1-Ranger		INGV		
MGAB	Montegabbione	TR	Umbria	42,9126	12,1121	547	Trillium-40s	Episensor	INGV		
MGR	Morigerati	SA	Campania	40,1376	15,5535	288	Trillium-40s	Episensor	INGV		
MGRO	Montegrosso (Pianlatte)	IM	Liguria	44,0426	7,8082	1690	Trillium-40s		INGV-IG		
MIDA	Miranda	IS	Molise	41,6419	14,2540	950	Trillium-40s	Episensor	INGV		
MIGL	Miglionico	MT	Basilicata	40,6044	16,4410	440	Trillium-40s	Episensor	INGV		
MILN	Milano	MI	Lombardia	45,4803	9,2321	125		Episensor	INGV		
MILZ	Milazzo Faro	ME	Sicilia	38,2713	15,2313	0	Trillium-40s		INGV		
MMGO	Monte Magaggiaro	AG	Sicilia	37,6620	12,9767	397	SS1-Ranger		INGV		
ммк	Mattmark	(CH)	Svizzera	46,0517	7,9650	2200	STS2-120s		ETH		
MMN	Mormanno	CS	Calabria	39,8910	15,9904	921	Trillium-40s		INGV		

MMUR	Monto Murano	AN	Marcho	43,4418	12,9973	800		Eniconcor	INGV		
MNO	Monte Murano Monte Soro	ME	Marche Sicilia	37,9310	14,6950	1830	Le3D-5s	Episensor	INGV		
				-		835	Trillium-40s		INGV		
MNOV	Novara di Sicilia Montasola	ME RI	Sicilia Lazio	38,0286 42,3855	15,1356 12,6811	706	Trillium-40s	Episensor	INGV		21/03/13
MNTP	Montappone	FM	Marche	43,1374	13,4693	325	1111111111-405	Episensor	INGV		21/03/13
MNTV	Mantova	MN	Lombardia	45,1495	10,7897	36		Episensor	INGV		
мосо	Biccari - Mt.	FG	Puglia	41,3700	15,1580	1049	Trillium-40s	Episensor	INGV		
	Cornacchia Modena -		Emilia	,	,		1111111111-405				
MODE	Università	МО	Romagna	44,6297	10,9492	41		Episensor	INGV		
MODR	Mondragone	CE	Campania	41,1459	13,8779	345	Trillium-40s	Episensor	INGV		
МОМА	Monte Martano	PU	Marche	42,8010	12,5682	1040	Trillium-40s	Episensor	INGV		
MONC	Moncucco Torinese	AT	Piemonte	45,0739	7,9271	480	Trillium-40s	Episensor	INGV		
MOSC	Santa Caterina - Moschiano	AV	Campania	40,8610	14,6971	682	Le3D-5s		INGV	07/08/13	30/12/13
MOSI	Gro.montoni- Vinschgau	BZ	Trentino Alto Adige	46,6164	10,5495	1957	STS2-120s		INGV-SI		
MPAG	Monte Paganuccio	PU	Marche	43,6292	12,7595	930	Le3D-5s	Episensor	INGV		
MPAZ	Palizzi	RC	Calabria	37,9531	16,0067	496	Trillium-40s		INGV		
MPG	Monte Pellegrino	PA	Sicilia	38,1617	13,3600	600	Le3D-5s		INGV		
MPNC	San Pier Niceto	ME	Sicilia	38,1465	15,3528	479	Trillium-40s		INGV		
MRB1	Apice - Monte Rocchetta	BN	Campania	41,1227	14,9682	688	Trillium-40s	Episensor	INGV		
MRGE	Morge	AO	Valle	45,7698	7,0610	1660	Trillium-40s	Episensor	INGV		
MRLC	Muro Lucano	PZ	d'Aosta Basilicata	40,7564	15,4889	605	Trillium-40s	Episensor	INGV		
MRVN	Minervino Murge	BA	Puglia	41,0609	16,1958	610	Trillium-40s	Episensor	INGV		
MSAG	Monte	FG	Puglia	41,7120	15,9096	890	Trillium-40s	Episensor	INGV		
MSC	Sant'Angelo Monte Massico	CE	Campania	41,1915	13,9713	109	S-13		INGV-OV		
MSCL	Scilla	RC	Calabria	38,2320	15,7900	893	Le3D-20s		INGV-CT		
MSFR	San Fratello	ME	Sicilia	38,0339	14,5916	723	Trillium-40s		INGV-CT		
MSRU	Poggio Scudearu	ME	Sicilia	38,2639	15,5083	408	Trillium-40s		INGV		
MSSA	Maissana	SP	Liguria	44,3163	9,5174	930	Trillium- 240s		INGV-IG		
MTCE	Montecelio	RM	Lazio	42,0228	12,7422	388	Trillium-40s		INGV		
MTCR	Monachino	PT	Toscana	44,0280	11,0024	1290	Le3D-1s		INGV	08/01/13	
MTGR	Montagna Grande	TP	Sicilia	37,8934	12,7593	751	SS1-Ranger		INGV		
MTL1	Matelica	МС	Marche	43,2567	13,0096	353		SF3000	INGV		
MTLF	Montolieu	(F)	Francia	43,3411	2,2175	365	STS2-120s		RD	19/06/13	
MTRZ	Monterenzio	во	Emilia Romagna	44,3128	11,4248	570	Trillium-40s	Episensor	INGV		
MTSN	Montesano sulla Marcellana	SA	Campania	40,2663	15,7515	1056	Trillium-40s	Episensor	INGV		
MTTG	Motta San	RC	Calabria	38,0031	15,6999	484	Trillium-40s		INGV		
MUCR	Giovanni Ucria	ME	Sicilia	38,0430	14,8739	1042	Trillium-40s		INGV		
MUGIO	Muggio	(CH)	Svizzera	45,9219	9,0417	830	STS2-120s		ETH		
MURB	Monte Urbino	PG	Umbria	43,2630	12,5246	845	Trillium-40s	Episensor	INGV		
NARO	Abbazia di Naro	PU	Marche	43,6108	12,5806	272	Trillium-40s		INGV		
NDIM	Novi di Modena	МО	Emilia	44,8873	10,8987	19		Episensor	INGV	08/02/13	
NEGI	Perinaldo	IM	Romagna Liguria	43,8462	7,7027	734	CMG40T-60s		INGV-IG	. , -	
NEVI	Neviano degli	PR	Emilia	44,5834	10,3163	480		Episensor	INGV		
NL9	Arduini Nola	NA	Romagna Campania	40,9205	14,5450	75	S-13		INGV-OV		
NOCI	Noci	BA	Puglia	40,7888	17,0644	420	Trillium-40s	Episensor	INGV		
NOV	Novara di Sicilia	ME	Sicilia	38,0278	15,1367	775	Trillium-40s		INGV -		
			Emilia		•				CT		
NOVE	Novellara	RE	Romagna	44,7982	10,7161	16	Le3D-5s		INGV		

NRCA	Norcia	PG	Umbria	42,8336	13,1143	927	Trillium-40s	Episensor	INGV		
ОС9	Casamicciola	NA	Campania	40,7458	13,9008	123	S-13		INGV-OV		
OFFI	Offida	AP	Marche	42,9350	13,6857	320	Trillium-40s		INGV		
OPPE	Oppeano	VR	Veneto	45,3082	11,1724	20		Episensor	INGV		
ORI	Oriolo Calabro	CS	Calabria	40,0510	16,4504	375	Trillium-40s		INGV		
ORIF	Oris en Rattier	(F)	Francia	44,9183	5,8800	1080	STS2-120s		RD	19/06/13	
ORZI	Orzinuovi	BS	Lombardia	45,4056	9,9307	83		Episensor	INGV		
ossc	Oss. Polifunz. del Chianti (OPC)	FI	Toscana	43,5236	11,2458	452	Trillium- 120s	Episensor	INGV		
ovo	Osservatorio Vesuviano	NA	Campania	40,8275	14,3967	584	Trillium- 240s		INGV-OV		
PALA	Cima Pala	PN	Friuli Venezia Giulia	46,2450	12,9240	1280	STS2-120s		OGS-NI		
	Palazzo San Gervasio	PZ	Basilicata	40,9441	15,9602	450	Trillium-40s	Episensor	INGV		
PAOL	Paolisi	BN	Campania	41,0312	14,5675	715	Trillium- 120s	Episensor	INGV		
	Parchiule - Borgo Pace	PU	Marche	43,6486	12,2386	580	Trillium-40s		INGV		
	Pian Castagno - Ponzone	AL	Piemonte	44,5413	8,5452	770	Trillium-40s		INGV-IG		
PCRO	Pietralacroce	AN	Marche	43,6077	13,5323	165		Episensor	INGV		
PDG	Podgorica	(MNE)	Montenegr o	42,4297	19,2608	40	STS2-120s	Episensor	MEdNet		
PE3	Peglio	PU	Marche	43,6960	12,4963	530	S-13 (terna)		INGV		
PESA	Pesaro	PS	Marche	43,9411	12,8402	221	Trillium-40s		INGV		
PETRA	Petralia Soprana	PA	Sicilia	37,8335	14,1148	1547	Trillium-40s		INGV		
PGF	Poggiola	(F)	Corsica	42,5483	8,9994	1130	STS2-120s		RD	19/06/13	
PGT2	Pioggiola	(F)	Corsica	42,5483	8,9994	1130	STS2-120s		RD		19/06/201 3
PIEI	Pieia	PS	Marche	43,5357	12,5350	665	Trillium-40s		INGV		
PIGN I	Pignataro Maggiore	CE	Campania	41,2000	14,1799	398	Trillium- 120s	Episensor	INGV		
PII	Pisa Certosa	PI	Toscana	43,7219	10,5250	66	Trillium- 120s		INGV	25/07/13	
PIO1	Pioraco	МС	Marche	43,1782	12,9838	460		SF3000	INGV		
PIPA	Pietrapaola	CS	Calabria	39,4851	16,8158	479	Trillium- 120s	Episensor	INGV		
PLAC	Placanica	RC	Calabria	38,4494	16,4383	602	Trillium-40s	Episensor	INGV		
	Pollina	PA	Sicilia	37,9926	14,1431	787	Le3D-5s		INGV		
	Palmaria - Porto Venere	SP	Liguria	44,0498	9,8537	22	Trillium- 240s		INGV		
PLONS	Plons	(CH)	Svizzera	47,0492	9,3807	1068	STS2-120s		ETH		
POFI	Posta Fibreno	FR	Lazio	41,7174	13,7120	878	Trillium-40s	Episensor	INGV		
POLC	Polcenigo	PN	Friuli Venezia Giulia	46,0266	12,5005	150	CMG40T-30s		OGS-NI		
РОРМ	Popiglio	PT	Toscana	44,0045	10,7570	440	CMG40T-60s		INGV-IG		
	Pozzuoli	NA	Campania	40,8203	14,1205	3	L4-C-3D		INGV-OV		
	Marolino	MC	Marche Emilia	43,3778	13,6095	21	Le3D-5s Trillium-	Episensor	INGV	21/07/13	
	Parma Università	PR	Romagna	44,7637	10,3131	78	120s		INGV		
PSB1	Pesco Sannita	BN	Campania Friuli	41,2235	14,8108	551	Trillium-40s	Episensor	INGV		
	Patocco	UD	Venezia Giulia	46,4075	13,3540	700	Trillium-40s		INGV		
PIF	Montebello (Guzzano)	РО	Toscana	43,9603	11,0693	533	S-13 (terna)		INGV		
	Pantelleria - Kuddia Mida	TP	Sicilia	36,7885	11,9934	626	Trillium-40s		INGV		
PTQR	Pietraquaria	AQ	Abruzzo	42,0219	13,4005	957	Trillium- 120s		INGV		
PTRJ	Pietraroja	BN	Campania	41,3641	14,5290	1027	Trillium- 240s	Episensor	INGV		
. —											

PUK	Puke	(AL)	Albania	42,0426	19,8926	900	Trillium-40s		AC		
PZUN	Potenza	PZ	Basilicata	40,6458	15,8070	820	STS2-120s	Episensor	MEdNet-		
PZZ	Università Prazzo-Stroppo	CN	Piemonte	44,5068	7,1160	1430	Trillium-40s	'	BA INGV-IG		
PZZT	Monte Pizzetto	ВО	Emilia	44,1313	10,8617	1236	Trillium-40s		INGV		21/02/13
QLNO	Quiliano	SV	Romagna Liguria	44,3243	8,3459	547	Trillium-40s		INGV		
RAFF	Raffo Rosso	СТ	Sicilia	37,2225	14,3624	310	Trillium-40s		INGV		
RAVA	Ravarino	МО	Emilia Romagna	44,7559	11,1188	15	Le3D-5s		INGV		
RDP	Rocca Di Papa	RM	Lazio	41,7583	12,7167	760	Trillium-40s		INGV		
REMY	Saint Rhemy en Bosses	AO	Valle d'Aosta	45,8378	7,1565	2448	Trillium-40s		INGV		
RESU	Resuttano	CL	Sicilia	37,6468	14,0568	785	Trillium-40s		INGV		
RISI	Rein in Taufers- Ahrntal	BZ	Trentino Alto Adige	46,9480	12,0787	1785	STS2-120s		INGV-SI		
RM32	Poggio Cancelli	RI	Lazio	42,5702	13,2932	1362	Le3D-1s	Episensor	INGV		10/04/13
RM33	Pellescritta - Montereale	AQ	Abruzzo	42,5090	13,2145	1097	Le3D-5s	Episensor	INGV		
RMP	Roma Monte	RM	Lazio	41,8111	12,7022	380	Trillium-		INGV		
RNI2	Porzio Rionero Sannitico	IS	Molise	41,7033	14,1524	950	120s Trillium-40s	Episensor	INGV		
ROM9	ROMA (Sede	RM	Lazio	41,8284	12,5155	110	Trillium-	Episensor	INGV		
RONC	INGV) Roncone	TN	Trentino	45,9802	10,6228	1913	120s	CMG-5T	ST	19/11/13	
RORO	Rocca Rossa	SV	Alto Adige Liguria	44,1122	8,0662	260	CMG3T-100s		INGV-IG	,, 10	
ROSI	Ro.kopf-Sterzing	BZ	Trentino	46,9281	11,4118	1917	STS2-120s		INGV-SI		
ROTM	Rocchetta Tanaro	AT	Alto Adige Piemonte	44,8493	8,3527	221	Trillium-40s		INGV-IG		
ROVR	Roverè Veronese	VR	Veneto	45,6468	11,0721	1316	Trillium-	Episensor	INGV		
RRL	Cesana Torinese	TO	Piemonte	44,9208	6,7908	2130	120s Trillium-40s	Epiderisor	INGV-IG		
RSM2	Repubblica di San	(RSM)	Rep. San	43,9377	12,4451	645	Trillium-		INGV		
RSP	Marino Reno Superiore	TO	Marino Piemonte	45,1482	7,2653	1285	120s Trillium-40s	Episensor	INGV-IG		
RUFI	Rufina	FI	Toscana	43,8380	11,5095	243	Le3D-1s	Epiderisor	INGV		
SABO	Monte Sabotino	GO	Friuli Venezia Giulia	45,9875	13,6336	621	STS2-120s		OGS-NI		
SACR	S. Croce del Sannio	BN	Campania	41,3974	14,7057	859	Trillium-40s	Episensor	INGV		
SACS	S. Casciano dei	SI	Toscana	42,8491	11,9097	845	Trillium- 120s	Episensor	INGV		
SALB	Bagni San Lorenzo	CS	Calabria	39,8772	16,3460	1188	Trillium-40s	Episensor	INGV		
SALO	Bellizzi Salò	BS	Lombardia	45,6183	10,5243	600	Trillium-	Episensor	INGV		
SAMA	S.Maria delle Mole	RM	Lazio	41,7805	12,5923	119	120s Trillium-40s		INGV		
SANR	(Ciampino) Sandrigo	VI	Veneto	45,6400	11,6099	51	1111111111 403	Episensor	INGV		
SARM	San Romano in	LU	Toscana	44,1840	10,4007	1070	Trillium-40s	Ерізсіізоі	INGV-IG	25/01/13	
SATI	Garfagnana Passo Salati	AO	Valle	45,8753	7,8685	3005	Trillium-40s		INGV-IG	23,01,13	
SBPO	S. Benedetto Po	MN	d'Aosta Lombardia	45,0511	10,9199	10	Trillium-40s	Episensor	INGV		
SCHR	S. Chirico Raparo	PZ	Basilicata	40,1992	16,0759	968	Le3D-5s	Episerisor	INGV		
SCTE	Santa Cesarea	LE	Puglia	40,0724	18,4675	150	Trillium-	Episensor	INGV		
SEF1	Terme Sefro	MC	Marche	43,1468	12,9476	518	120s	SF3000	INGV		
SEI	Sant'Agata	FI	Toscana	44,0543	11,3586	610	Trillium-40s	3.3000	INGV	25/01/13	
SENI^	Senigallia	AN	Marche	43,7052	13,2331	10	Le3D-1s	Episensor	INGV	, - ,	
SERM	Semide	MN	Lombardia	45,0099	11,2958	7	Le3D-1s	Episensor	INGV		
SERS	Sersale	CZ	Calabria	39,0359	16,6886	1221	Trillium-40s	Episensor	INGV		
SFI	Santa Sofia	FO	Puglia	43,9048	11,8470	548	Le3D-5s	Episensor	INGV		
SGG	S.Gregorio Matese	CE	Campania	41,3867	14,3792	880	Trillium-40s	Episensor	INGV-OV		

SGRT	San Giovanni Rotondo	FG	Puglia	41,7546	15,7437	960	Trillium-40s	Episensor	INGV		
SGTA	Sant'Agata di	FG	Puglia	41,1350	15,3650	890	Trillium-40s	Episensor	INGV		
SIRI	Puglia Monte Sirino -	PZ	Basilicata	40,1821	15,8675	1063	Trillium-40s	Episensor	INGV		
SLCN	Moliterno Sala Consilina	SA	Campania	40,3900	15,6328	986	Trillium-40s	Episensor	INGV		
SMA1	San Martino	RI	Lazio	42,6305	13,3353	1150	Le3D-5s	Lpiserisoi	INGV		
SN1#	Capo Mulini Mare	СТ	Sicilia	37,5476	15,3975	-	CMG1T-360s		INGV-CT		
SNAL	S. Angelo dei	AV	Campania	40,9254	15,2091	2065 874	Trillium-40s	Episensor	INGV		
SNTG	Lombardi Esanatoglia	MC	Marche	43,2550	12,9406	650	Trillium-	Episensor	INGV		
SOI	Samo	RC	Calabria	38,0732	16,0542	305	120s Le3D-5s		INGV		
SOLUN	Solunto	PA	Sicilia	38,0919	13,5326	190	Trillium- 120s		INGV		
SRES	Monte Soratte	RM	Lazio	42,2369	12,5099	410	Trillium- 240s		INGV	13/05/13	
SSFR	Montelago di	AN	Marche	43,4363	12,7823	750	Trillium-40s		INGV		
SSM1	Sassoferrato San Severino	MC	Marche	43,2288	13,1770	240		SF3000	INGV		
SSP9	Marche Sansepolcro	AR	Toscana	43,5739	12,1314	324	Le3D-1s		INGV		
SSY	Sortino	SR	Sicilia	37,1577	15,0737	600	Trillium-40s		INGV		
STAL	Staligial	PD	Friuli Venezia Giulia	46,2601	12,7104	625	Trillium- 120s	Episensor	INGV		
STON	Ston	(HR)	Croazia	42,8715	17,6990	50	CMG40T-30s		CR		
STR3	Stromboli 3	ME	Sicilia	38,7978	15,2305	195	CMG40T-60s		INGV-OV		26/03/13
STR4	Stromboli 4	ME	Sicilia	38,7739	15,2115	86	CMG40T-60s		INGV-OV		
STV	Sant'Anna di Valdieri	CN	Piemonte	44,2455	7,3260	930	Trillium- 240s		INGV		
T0104	Coppito - Madonna delle Grazie	AQ	Abruzzo	42,3593	13,3395	741	Trillium- 120s	Episensor	INGV		
TEOL	Teolo	PD	Veneto	45,3617	11,6739	370	Trillium- 120s		INGV		
TERO	Teramo	TE	Abruzzo	42,6228	13,6039	673	Trillium-40s	Episensor	INGV		
TIP	Timpagrande	KR	Calabria	39,1794	16,7583	789	STS2-120s	Episensor	MedNet		
TIR	Tirana	(AL)	Albania	41,3472	19,8631	247	STS2-120s		MedNet		
TOLF	Tolfa	RM	Lazio	42,0641	12,0002	371	Trillium-40s	Episensor	INGV		
TPE	Tepelene	(AL)	Albania	40,2947	20,0094	273	CMG40T-60s		AC		
TR9	Trevico	AV	Campania	41,0458	15,2320	1094	L4-C-3D		INGV-OV		
TRAV	Traversella	ТО	Piemonte	45,5127	7,7470	990	Trillium-40s		INGV-IG		
TRE1	Treia	MC	Marche	43,3112	13,3128	330		SF3000	INGV		
TREG	Tregnago Trieste	VR TS	Veneto Friuli Venezia	45,5230 45,7088	11,1606	342 161	Trillium-40s	Episensor Episensor	INGV		
TRIF	Trifonti	GR	Giulia Toscana	43,1148	10,9027	596	Trillium-40s		INGV		
TRIV	Trivento	СВ	Molise	41,7666	14,5502	598	Trillium-40s	Episensor	INGV		
TRTR	Tortoreto Alta	TE	Abruzzo	42,8081	13,9138	160	Trillium-40s	Episensor	INGV		
TUE	Stuetta	SO	Lombardia	46,4722	9,3473	1924	STS2-120s	Episensor	MedNet		
USI	Ustica	PA	Sicilia	38,7079	13,1791	285	Trillium-40s		INGV		
VAGA	Valle Agricola	CE	Campania	41,4154	14,2342	795	Trillium-40s	Episensor	INGV		
VARE	Varese	VA	Lombardia	45,8677	8,7700	1219	Le3D-5s		INGV		
VCEL	Villa Celiera	PE	Abruzzo	42,3946	13,8406	1185	Le3D-5s		INGV		
VENT	Ventotene	LT	Lazio	40,7948	13,4216	108	Le3D-5s		INGV		
VINO	Villanova	UD	Friuli Venezia Giulia	46,2538	13,2755	608	CMG3T-100s		OGS-NI		
VITU	Vitulano	BN	Campania	41,1833	14,6302	848	Le3D-5s		INGV	30/12/13	

VLC	Villa Colle Mandina	LU	Toscana	44,1591	10,3862	562	STS2-120s	Episensor	MedNet		
VLO	Vlore	(AL)	Albania	40,4686	19,4955	80	Trillium-40s		AC		
VMG	Villore del Mugello	FI	Toscana	43,9617	11,5438	450	S-13		INGV		
VOBA	Vobarno	BS	Lombardia	45,6429	10,5040	292		Episensor	INGV		
VSL	Villasalto	CA	Sardegna	39,4960	9,3780	370	STS1-VBB		MedNet		
VTIR	Vesuvo - Forestale	NA	Campania	40,8059	14,4242	612	CMG40T-60s		INGV-OV	18/03/13	
VULT	Monte Vulture- Melfi	PZ	Basilicata	40,9549	15,6163	1101	Trillium-40s	Episensor	INGV		
VVLD	Villavallelonga	AQ	Abruzzo	41,8697	13,6232	1051	Trillium-40s		INGV		
WDD	Wield Dalam	(M)	Isola di Malta	35,8373	14,5242	44	STS2-120s		MedNet		
WTTA	Wattenberg	(A)	Austria	47,2637	11,6363	1764	STS2-120s		AO		
ZAG	Zagreb	(HR)	Croazia	45,8268	15,9868	188	CMG40T-30s		CR		
ZCCA	Zocca	МО	Emilia Romagna	44,3509	10,9765	700	Trillium-40s		INGV		
ZEN8	San Zeno di Montagna	VR	Veneto	45,6378	10,7319	596		Episensor	INGV		
ZOVE	Zovencedo	VI	Veneto	45,4536	11,4876	376		Episensor	INGV		

	STAZIONI TEMPORANEE 2013											
Sigla	Denominazione	Prov.	Regione	Lat.	Long.	Н	veloc.	accel.	rete	aperte '13	chiuse '13	
T0724	Tremoli	CS	Calabria	39,8488	15,8765	357	Le3D-Lite (1s)	Episensor	INGV		31/05/13	
T0813	Finale Emilia - Massa Finalese	МО	Emilia Romagna	44,8778	11,1992	1	Le3D-Lite (1s)	Episensor	INGV		05/04/13	
T0819	Novi di Modena	МО	Emilia Romagna	44,8873	10,8987	19	Le3D-5s	Episensor	INGV		11/06/13	
T0911	Castelpoggio	MS	Toscana	44,1117	10,0738	520	Le3D-1s	Episensor	INGV	21/06/13	12/11/13	
T0912	Minucciano	LU	Toscana	44,1685	10,2095	687	Le3D-1s	Episensor	INGV	21/06/13	11/11/13	
T1011	San Potito Sannitico	CE	Campania	41,3596	14,4175	1152	Le3D-1s	Episensor	INGV	30/12/13		
T1012	Faicchio	BN	Campania	41,2623	14,4965	599	Le3D-1s	Episensor	INGV	30/12/13		

QUADERNI di GEOFISICA

ISSN 1590-2595

http://istituto.ingv.it/it/le-collane-editoriali-ingv/quaderni-di-geofisica.html/

I QUADERNI DI GEOFISICA (QUAD. GEOFIS.) accolgono lavori, sia in italiano che in inglese, che diano particolare risalto alla pubblicazione di dati, misure, osservazioni e loro elaborazioni anche preliminari che necessitano di rapida diffusione nella comunità scientifica nazionale ed internazionale. Per questo scopo la pubblicazione on-line è particolarmente utile e fornisce accesso immediato a tutti i possibili utenti. Un Editorial Board multidisciplinare ed un accurato processo di peer-review garantiscono i requisiti di qualità per la pubblicazione dei contributi. I QUADERNI DI GEOFISICA sono presenti in "Emerging Sources Citation Index" di Clarivate Analytics, e in "Open Access Journals" di Scopus.

QUADERNI DI GEOFISICA (QUAD. GEOFIS.) welcome contributions, in Italian and/or in English, with special emphasis on preliminary elaborations of data, measures, and observations that need rapid and widespread diffusion in the scientific community. The on-line publication is particularly useful for this purpose, and a multidisciplinary Editorial Board with an accurate peer-review process provides the quality standard for the publication of the manuscripts. QUADERNI DI GEOFISICA are present in "Emerging Sources Citation Index" of Clarivate Analytics, and in "Open Access Journals" of Scopus.

RAPPORTI TECNICI INGV

ISSN 2039-7941

http://istituto.ingv.it/it/le-collane-editoriali-ingv/rapporti-tecnici-ingv.html/

I RAPPORTI TECNICI INGV (RAPP. TEC. INGV) pubblicano contributi, sia in italiano che in inglese, di tipo tecnologico come manuali, software, applicazioni ed innovazioni di strumentazioni, tecniche di raccolta dati di rilevante interesse tecnico-scientifico. I RAPPORTI TECNICI INGV sono pubblicati esclusivamente on-line per garantire agli autori rapidità di diffusione e agli utenti accesso immediato ai dati pubblicati. Un Editorial Board multidisciplinare ed un accurato processo di peer-review garantiscono i requisiti di qualità per la pubblicazione dei contributi.

RAPPORTI TECNICI INGV (RAPP. TEC. INGV) publish technological contributions (in Italian and/or in English) such as manuals, software, applications and implementations of instruments, and techniques of data collection. RAPPORTI TECNICI INGV are published online to guarantee celerity of diffusion and a prompt access to published data. A multidisciplinary Editorial Board and an accurate peer-review process provide the quality standard for the publication of the contributions.

MISCELLANEA INGV

ISSN 2039-6651

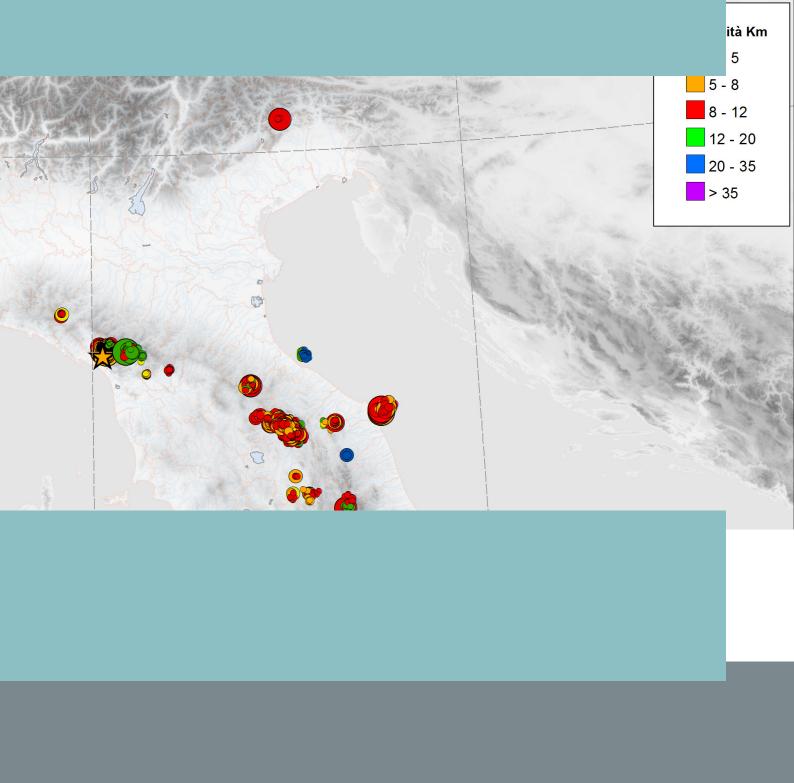
http://istituto.ingv.it/it/le-collane-editoriali-ingv/miscellanea-ingv.html

MISCELLANEA INGV (MISC. INGV) favorisce la pubblicazione di contributi scientifici riguardanti le attività svolte dall'INGV. In particolare, MISCELLANEA INGV raccoglie reports di progetti scientifici, proceedings di convegni, manuali, monografie di rilevante interesse, raccolte di articoli, ecc. La pubblicazione è esclusivamente on-line, completamente gratuita e garantisce tempi rapidi e grande diffusione sul web. L'Editorial Board INGV, grazie al suo carattere multidisciplinare, assicura i requisiti di qualità per la pubblicazione dei contributi sottomessi.

MISCELLANEA INGV (MISC. INGV) favours the publication of scientific contributions regarding the main activities carried out at INGV. In particular, MISCELLANEA INGV gathers reports of scientific projects, proceedings of meetings, manuals, relevant monographs, collections of articles etc. The journal is published online to guarantee celerity of diffusion on the internet. A multidisciplinary Editorial Board and an accurate peer-review process provide the quality standard for the publication of the contributions.

Coordinamento editoriale e impaginazione

Francesca DI STEFANO, Rossella CELI Istituto Nazionale di Geofisica e Vulcanologia


Progetto grafico e impaginazione

Barbara ANGIONI Istituto Nazionale di Geofisica e Vulcanologia

©2020

Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata, 605 00143 Roma tel. +39 06518601

www.ingv.it

