176

QUADERNI di GEOFISICA

Bollettino Sismico Italiano 2015

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

Direttore Responsabile

Valeria DE PAOLA

Editorial Board

Luigi CUCCI - Editor in Chief (luigi.cucci@ingv.it) Raffaele AZZARO (raffaele.azzaro@ingv.it) Christian BIGNAMI (christian.bignami@ingv.it) Viviana CASTELLI (viviana.castelli@ingv.it) Rosa Anna CORSARO (rosanna.corsaro@ingv.it) Domenico DI MAURO (domenico.dimauro@ingv.it) Mauro DI VITO (mauro.divito@ingv.it) Marcello LIOTTA (marcello.liotta@ingv.it) Mario MATTIA (mario.mattia@ingv.it) Milena MORETTI (milena.moretti@ingv.it) Nicola PAGLIUCA (nicola.pagliuca@ingv.it) Umberto SCIACCA (umberto.sciacca@ingv.it) Alessandro SETTIMI (alessandro.settimi1@istruzione.it) Andrea TERTULLIANI (andrea.tertulliani@ingv.it)

Segreteria di Redazione

Francesca DI STEFANO - Coordinatore Rossella CELI Robert MIGLIAZZA Barbara ANGIONI Massimiliano CASCONE Patrizia PANTANI Tel. +39 06 51860068 redazionecen@ingv.it

REGISTRAZIONE AL TRIBUNALE DI ROMA N.174 | 2014, 23 LUGLIO

© 2014 INGV Istituto Nazionale di Geofisica e Vulcanologia Rappresentante legale: Carlo DOGLIONI Sede: Via di Vigna Murata, 605 | Roma

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

QUADERNI di GEOFISICA

Bollettino Sismico Italiano 2015

Italian Seismic Bulletin 2015

Rosalba Di Maro¹, Luca Arcoraci¹, Patrizia Battelli², Michele Berardi², Corrado Castellano¹, Barbara Castello², Diana Latorre², Alessandro Marchetti², Lucia Margheriti², Francesco Mele², Anna Nardi² e Antonio Rossi¹

¹ INGV | Istituto Nazionale di Geofisica e Vulcanologia, Sezione Sismologia e Tettonofisica ² INGV | Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti

Accettato 14 novembre 2021 | Accepted 14 November 2021

Come citare | *How to cite* Di Maro R., Arcoraci L., Battelli P., Berardi M., Castellano C., Castello B., Latorre D., Marchetti A., Margheriti L., Mele F., Nardi A. e Rossi A., (2022). Bollettino Sismico Italiano 2015. Quad. Geofis., 176: 1-52, https://doi.org/10.13127/qdg/176

In copertina Mappa della sismicità italiana e di confine estratta dal Bollettino Sismico Italiano del 2015 | Map of Italian and border seismicity extracted from the Italian Seismic Bulletin of 2015

INDICE

Riassunto	7
Abstract	7
1. Il bollettino sismico dell'INGV 1.1. Analisti del BSI per l'anno 2015	8 10
2. La Rete Sismica Nazionale nel 2015	10
3. I dati del BSI nel 2015	12
4. Qualità delle localizzazioni	14
5. La sismicità italiana nel 2015	15
6. Sequenze sismiche del 2015 6.1 Criteri di selezione 6.2 Principali sequenze sismiche nel 2015 6.2.1 Italia settentrionale 6.2.1.1 Arco alpino 6.2.1.2 Appennino tosco-emiliano e Romagna 6.2.2 Italia centrale 6.2.2.1 Toscana centrale 6.2.2.2 Appennino umbro-marchigiano 6.2.2.3 Appennino abruzzese 6.2.2.4 Mar Adriatico 6.2.3 Italia meridionale 6.2.3.1 Calabria 6.2.3.2 Sicilia	 18 19 21 22 23 24 24 24 24 26 27 28 28 29
7. Sismicità diffusa	29
8. Sismicità antropica	30
9. Sintesi della sismicità analizzata nel 2015	32
Ringraziamenti	32
Acknowledgments	32
Bibliografia	32

Allegato A: Stazioni della Rete Sismica Nazionale operative nel 2015

35

Riassunto

L'Istituto Nazionale di Geofisica e Vulcanologia (INGV) riceve, nella Sala di Sorveglianza Sismica e Centro Allerta Tsunami di Roma, i segnali in tempo reale da centinaia di stazioni sismiche distribuite sul territorio nazionale. Entro due minuti dall'occorrenza di un qualsiasi terremoto, appositi sistemi automatici forniscono una prima valutazione dei parametri ipocentrali. Due sismologi, sempre presenti nella sala operativa della sede centrale, controllano le informazioni ottenute e, per i terremoti sopra una determinata soglia di magnitudo ($M_L \ge 2.5$), comunicano alla Sala Situazione Italia della Protezione Civile i dati elaborati, in media in circa 12 minuti (massimo entro 30 minuti) [Margheriti et al., 2021].

La valutazione definitiva dei parametri ipocentrali di tutti i terremoti, dai più grandi avvertiti in vaste aree del territorio ai più piccoli rilevati solo da pochi strumenti, è demandata a un'analisi più accurata svolta in un secondo tempo, ormai da alcuni decenni, da un gruppo di analisti specializzati nell'interpretazione dei segnali sismici.

Gli analisti sismologi del Bollettino Sismico Italiano revisionano tutti i dati registrati dalle stazioni della Rete Sismica Nazionale (RSN) dell'INGV e riconoscono la presenza di terremoti attraverso un'analisi diretta delle forme d'onda. In tal modo l'analista rileva il tempo d'arrivo delle onde sismiche ai vari sensori e valuta l'ampiezza delle oscillazioni e la direzione del moto del suolo; questi parametri, utilizzati da apposite procedure di calcolo, consentono di localizzare ogni terremoto e di valutare la magnitudo associata. Le informazioni così ottenute confluiscono nel database che l'INGV gestisce e che mette a disposizione della comunità¹.

Questa pubblicazione ha come scopo quello di far conoscere un prodotto dell'Istituto Nazionale di Geofisica e Vulcanologia, Il Bollettino Sismico Italiano (BSI), con particolare riferimento all'anno 2015. Saranno delineate le principali caratteristiche della sismicità naturale e quella di origine antropica registrata in Italia nel corso dell'anno esaminato.

Abstract

The Istituto Nazionale di Geofisica e Vulcanologia (INGV) receives signals in real time from hundreds of seismic stations located throughout the country in the Seismic Surveillance Room and Tsunami Alert Center in Rome. When an earthquake occurs on the Italian territory, an automatic alarm provides a preliminary assessment of the hypocentral parameters within a couple of minutes. Two seismologists, always present in the seismic surveillance room in Rome, check the information obtained and, for earthquakes above a certain magnitude threshold (ML \geq 2.5), communicate the data processed to the Civil Protection Operation Room in about 12 minutes (max 30') [Margheriti et al., 2021].

The final evaluation of the hypocentral parameters of all earthquakes, from the strongest felt in vast areas of the territory to the smallest detected only by a few instruments, is carried out later using a more accurate analysis. This activity has been assigned, for decades and still today, to the group of analysts specialized in seismic signals interpretation.

The seismological analysts of the Italian Seismic Bulletin review all the data recorded by the stations of the National Seismic Network and recognize the presence of earthquakes through a direct analysis of the signals waveforms. In this way the analyst detects the time of arrival of the seismic waves to the various sensors and evaluates the amplitude of the oscillations and the direction of the ground motion; these parameters, used in specific calculation procedures, allow to locate each earthquake

¹ Per una descrizione esausitiva delle banche dati sismologiche consultare il sito terremoti.ingv.it; terremoti.ingv.it/bsi

and to evaluate the associated magnitude. The information thus obtained flows into the database that the INGV manages and makes available to the community².

This publication aims to make known a product of the National Institute of Geophysics and Volcanology, The Italian Seismic Bulletin, with specific focus on 2015 analysis. The main characteristics of natural seismicity and that of anthropogenic origin recorded in Italy during the examined year will be outlined.

Keywords Terremoto; Sequenza sismica; Bollettino sismico | Earthquake; Seismic sequence; Seismic bulletin

1. Il bollettino sismico dell'INGV

Come accennato nel Riassunto, i due sismologi in turno nella sala di sorveglianza sismica calcolano immediatamente i parametri ipocentrali degli eventi rilevati dal sistema automatico. A valle di ciò, tutti i dati e le informazioni contenute nel database³ vengono utilizzati dagli analisti per la redazione del bollettino. Durante questa fase vengono controllati di nuovo i parametri di tutti i terremoti, inserendo pesi e polarità degli arrivi delle onde sismiche e aggiungendo eventualmente i dati di tutte le stazioni non associate automaticamente dal sistema stesso.

Il numero di terremoti localizzati negli ultimi anni e riportati nel Bollettino Sismico Italiano (BSI) è aumentato fino a raggiungere alcune decine di migliaia l'anno. La Rete Sismica Nazionale (RSN) è oggi integrata in tempo reale con le stazioni delle reti regionali del Nord-Ovest [University of Genoa, 1967], del Nord-Est [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, 2016], del Trentino [Geological Survey-Provincia Autonoma di Trento, 1981], della Calabria (Università della Calabria), con la rete realizzata per il *Near Fault Observatory* dell'Alta Valle del Tevere - TABOO [Chiaraluce et al., 2014], con altre reti regionali e straniere, e infine con una serie di stazioni temporanee che vengono installate in caso di emergenza dal gruppo operativo SISMIKO dell'INGV (http://sismiko.ingv.it/).

Queste integrazioni hanno reso possibile la localizzazione di eventi di magnitudo inferiore a 1.5 in alcune aree del territorio nazionale. Da varie analisi fatte sui dati della rete e sulla sua geometria, è stato stimato che la soglia di magnitudo per la quale è possibile localizzare un evento in qualsiasi parte del territorio italiano (fatta esclusione per la Sardegna e per alcuni casi particolari) è di circa 1.7 [Amato and Mele, 2008].

In base ai dati riportati nella Tabella 1 [Nardi et al., 2015], relativa al numero di eventi registrati ogni anno per diverse classi di magnitudo, si nota che le sequenze sismiche dell'Aquila nel 2009 e dell'Emilia nel 2012 hanno influito fortemente sul numero di terremoti con $M \ge 3.5$, che risulta raddoppiato rispetto agli altri anni. Inoltre, anche il numero di eventi localizzati con M < 1.5 è risultato in costante crescita e questo dato è direttamente collegato all'aumento del numero di stazioni sul territorio nazionale.

² For an exhaustive description of the INGV seismological databases please visit the website: terremoti.ingv.it; terremoti.ingv.it/iside; terremoti.ingv.it/bsi

³ I dati parametrici degli eventi sono immediatamente disponibili sul sito dell'Istituto http://terremoti.ingv.it/. Dallo stesso sito è possibile accedere anche alle forme d'onda (nella sezione Download) e alle letture dei tempi delle fasi per ogni stazione sismica.

ANNO	NUMERO DI TERREMOTI	TERREMOTI M≥3.5	TERREMOTI M<1.5	AUTORE
2000	2920	87	1	BSI
2001	2538	46	0	BSI
2002	3180	111	0	BSI
2003	2540	76	1	BSI
2004	1891	33	0	BSI
2005	3626	54	1022	BSI
2006	6018	52	2164	BSI
2007	5940	43	2676	BSI
2008	6943	47	2945	BSI
2009	26088	128	12717	BSI
2010	14741	53	9393	BSI
2011	16618	86	10310	BSI
2012	18179	172	9417	BSI
2013	25148	80	17191	BSI
2014	27435	66	19933	BSI + Sala
2015	15632	73	9874	BSI + Sala

Tabella 1 Distribuzione annuale degli eventi con magnitudo minore di 1.5 e uguale o maggiore di 3.5.**Table 1** Annual distribution of events with magnitude less than 1.5 and equal to or greater than 3.5.

Ad ogni analista viene assegnata la revisione dei dati relativa ad alcuni giorni del calendario con una programmazione annuale.

L'aumento esponenziale del carico di lavoro per gli analisti del Bollettino è stato tale da dover decidere di limitare la revisione agli eventi con $M \ge 1.5$. Con questa nuova filosofia sono stati rivisti i dati a partire dagli ultimi mesi del 2014.

Per gli eventi con M < 1.5 rimane disponibile in ISIDe la localizzazione fatta nella sala operativa che fornisce in generale le letture dei tempi di arrivo su tutte le stazioni che hanno effettivamente registrato l'evento.

Per gli eventi con M \ge 3.5, da gennaio 2015, un gruppo ristretto di analisti rielabora i dati entro 24-72 ore dal verificarsi del terremoto, al fine di fornire parametri ipocentrali più accurati in tempi brevi.

Lo stesso gruppo ristretto entra in azione in caso di emergenza, in caso di sequenze sismiche o nel caso di specifiche richieste da parte del Dipartimento della Protezione Civile. La rapidità del calcolo dei parametri ipocentrali è essenziale e il numero di eventi analizzati, di molto superiore alla media, richiede un notevole sforzo e il supporto fondamentale di tutto il gruppo.

A partire dal mese di gennaio 2015 i dati del bollettino sono stati suddivisi in quadrimestri e pubblicati sul sito: http://terremoti.ingv.it/bsi con un DOI associato per facilitare la citazione (disponibile per il download in formato QuakeML). Per ogni quadrimestre è inoltre possibile scaricare un documento tecnico (in italiano e in formato pdf) nel quale sono descritte le principali caratteristiche della sismicità, della Rete Sismica Nazionale e il gruppo di lavoro [Margheriti et al., 2016a; 2016b; 2016c].

1.1 Analisti del BSI per l'anno 2015

Luca Arcoraci, Alexia Battelli, Patrizia Battelli, Michele Berardi, Corrado Castellano, Barbara Castello, Maria Grazia Ciaccio, Alberto Frepoli, Arianna Lisi, Giulio Lozzi, Alessandro Marchetti, Lucia Margheriti, Francesco Mariano Mele, Cinzia Melorio, Giorgio Modica, Anna Nardi, Nicola Mauro Pagliuca, Mario Pirro, Luca Pizzino, Antonio Rossi, Sabina Spadoni, Corrado Thermes, Massimiliano Vallocchia.

2. La Rete Sismica Nazionale nel 2015

Nel 2015, 470 stazioni sismiche permanenti e temporanee risultano operative. Esse includono tutte le stazioni della Rete Sismica Nazionale (RSN), in buona parte di proprietà e di gestione dell'INGV, 15 stazioni temporanee installate nell'ambito del Progetto AlpArray [Govoni et al., 2017] e anche numerose stazioni di altri enti italiani ed esteri con cui l'INGV ha instaurato collaborazioni per lo scambio di segnali. Di queste 470 stazioni in esercizio nel 2015, 428 hanno contribuito al Bollettino Sismico Italiano (BSI). La Tabella 2 riporta la composizione strumentale della Rete Sismica Nazionale nel 2015 e la Figura 1 mostra la distribuzione delle stazioni operative nell'anno. Le stazioni sono equipaggiate con velocimetri e accelerometri, a volte installati nello stesso sito.

Nel 2015 sono stati attivati 39 nuovi canali di acquisizione dati sia in seguito a nuove installazioni sia attraverso l'acquisizione di stazioni di altre reti sismiche locali ed estere. Inoltre, nel 2015 nel sito della stazione ATTE (Progetto TABOO; Chiaraluce et al. [2014]) è stato installato anche un accelerometro di tipo Episensor. Delle 455 stazioni sismiche permanenti, 47 risultano equipaggiate con il solo sensore accelerometrico.

In Trentino-Alto Adige sono stati selezionati tre nuovi siti di stazione in provincia di Trento (OZOL, PANI e VARA, tutti e tre equipaggiati con il solo sensore accelerometrico). In Friuli-Venezia Giulia sono stati attivati quattro nuovi canali di acquisizione per le stazioni di CLUD, MPRI e ZOU2 (in provincia di Udine) e di CIMO (in provincia di Pordenone). Una nuova stazione è stata installata in Veneto (VARN in provincia di Treviso), così come un nuovo sito è stato allestito in Lombardia (ZONE in provincia di Brescia) e uno in Piemonte (SARZ in provincia di Alessandria). Tre nuove stazioni sono state inserite in acquisizione per la Liguria: BURY in provincia di Imperia, CANO in provincia di Savona e RNCA in provincia di Genova. In Emilia-Romagna è stato ripristinato il sito per una stazione in provincia di Piacenza (BRSN). In Toscana è stata installata una nuova stazione, in provincia di Prato, in località Montemurlo (MPPT). Nel Lazio, in provincia di Frosinone, è stata attivata la stazione LIK, mentre un nuovo sito di stazione è stato selezionato in Abruzzo, in provincia dell'Aquila (GIGS). Due nuove stazioni temporanee per il monitoraggio della Val d'Agri sono state attivate in Basilicata: TN05 in provincia di Potenza e TT08 in provincia di Matera. In Sicilia sono stati riattivati, dopo alcuni anni di dismissione, due siti di stazione: CSLB (in provincia di Palermo) e ERC (in provincia di Trapani). Al di fuori dei confini nazionali è stato realizzato il collegamento di altre tre stazioni sismometriche: SRN in Albania, THL e VLS in Grecia.

Durante l'anno sono state inoltre installate e acquisite in tempo reale, concorrendo a fornire dati per il servizio di sorveglianza sismica del territorio nazionale e per l'elaborazione del BSI, 15 stazioni temporanee a larga banda (BB) nell'ambito del Progetto Europeo AlpArray (http://www.alparray.ethz.ch/en/home/).

Infine, nel corso del 2015 alcune stazioni della RSN sono state dismesse: San Damiano Macra (DOI) in provincia di Cuneo, Novellara (NOVE) in provincia di Reggio Emilia e Montebello (PTF) in provincia di Prato.

Tipologia	n°	Note
Numero totale di stazioni	470	comprese tre stazioni dismesse nel 2015 e 15 stazioni temporanee del Progetto AlpArray
Nuove installazioni 2015	39	di cui tre nuove acquisizioni da collaborazioni con enti esteri
Totale velocimetri	420	
Velocimetri verticali	9	
Velocimetri a tre componenti	411	
Accelerometri	173	47 stazioni hanno solo accelerometri
Sensori in pozzo (^)	11	
Stazioni fondo marino (#)	1	SN1
Totale stazioni fuori dei confini	40	4 HL; 10 ETH; 8 MN; 2 AO; 3 AC; 2 CR; 2 RD; 4 FR; 3 SL; 1 TR; 1 HL-NOA (codice stazioni e reti, vedi Allegato A)
Stazioni Geofon	2	ARPR e MATE
Trillium-240s	13	
Trillium-120s	35	
Trillium-120C	19	
Trillium-40s	196	
S-13 (terna)	2	
S-13	4	solo componente verticale
SS1-Ranger	5	solo componente verticale
Le3D-5s	40	2 sensori accoppiati con Malin in pozzo (BAT1 e BAT2)
Le3D-20s	3	
Le3D-1s	22	
L4-C-3D	1	MEU
CMG-3T-100s	2	
CMG1T-OBS-360s	1	SN1
CMG40T-30s	3	
CMG40T-60s	4	
CMG-3TB-360s	1	FERB
CMG-3ESP	3	
STS1-VBB	3	
STS2-120s	46	
STS2-3G-120s	3	
Malin	5	2 sensori accoppiati con Le3D-5s in pozzo (BAT1 e BAT2)
Episensor	154	
CMG-5T	9	
CMG-5TB	1	FERB
SF3000	9	

Tabella 2 Composizione strumentale della Rete Sismica Nazionale nel corso del 2015. I simboli ^ e # indicanonella tabella stazioni - Allegato A - rispettivamente i sensori in pozzo e i sensori sul fondale marino.**Table 2** Instruments of the Italian National Seismic Network installed during 2015. Symbols ^ and # indicate in thestation table - Attachment A - the borehole sensors and the OBS (Ocean Bottom Seismometers) respectively.

Figura 1 Mappa delle stazioni della Rete Sismica Nazionale in esercizio nel 2015. Le stazioni operative nell'arco dell'anno sono indicate da triangoli verdi se dotate di velocimetro e accelerometro, in arancione se con il solo velocimetro, in blu se equipaggiate con il solo accelerometro. I triangoli gialli indicano le nuove stazioni installate e quelli rossi le stazioni permanenti dismesse nel 2015, come riportato anche nell'Allegato A. Figure 1 Map of the Italian National Seismic Network operating during 2015. Green triangles show the stations that operated during the whole 2015 equipped with both velocimeter and accelerometer, orange triangles show stations equipped with velocimeter only, blue triangles those equipped with accelerometer only. Yellow triangles show new installed stations, and red ones show permanent stations dismissed during 2015, as also reported in Attachment A.

3. I dati del BSI nel 2015

Nel 2015 le stazioni della Rete Sismica Nazionale (RSN) hanno registrato più di 15500 eventi sul territorio italiano.

Per quanto riguarda la stima della magnitudo, per 1077 eventi è stato possibile calcolare solo la M_D (Magnitudo Durata) utilizzando la relazione di Console et al. [1988]. Per 14503 è stata calcolata la M_I (Magnitudo Locale) utilizzando la legge di attenuazione di Hutton and Bore [1987], mentre per 33 eventi è stato possibile calcolare anche la M_W (Magnitudo Momento) utilizzando la tecnica del Time Domain Moment Tensor (TDMT) [Dreger and Helmberger, 1993; Dreger, 2003] nella versione sviluppata all'INGV [Scognamiglio et al., 2009; 2010].

La magnitudo minima di completezza M_C del BSI nel 2015 è stata calcolata con il software ZMAP [Wiemer, 2001] utilizzando il metodo della massima verosimiglianza (Figura 2).

Figura 2 Magnitudo minima di completezza MC del BSI 2015 calcolata con il software ZMAP. Figure 2 Minimum magnitude of completeness MC for the BSI 2015 calculated with the ZMAP software.

QUADERNI di GEOFISICA n.176

Dal dataset iniziale del BSI sono stati eliminati i terremoti con profondità ipocentrale ≥ 38 km, corrispondente al valore medio della profondità della Moho nel modello a strati piani e paralleli utilizzato per la localizzazione dei terremoti del BSI [Mele et. al., 2010] (Tabella 3).

Spessore (km)	Velocità P (km/s)	Velocità S (km/s)
11.1	5.00	2.89
26.9	6.50	3.75
semispazio	8.05	4.65

Tabella 3 Parametri del modello a strati piani e paralleli utilizzato per la localizzazione dei terremoti del BSI.

 Table 3 Parameters of the model (plane and parallel layers) used for the localization of the BSI earthquakes.

Nell'analizzare il set dei dati è stata eliminata sia la sismicità di confine sia i circa 300 eventi di probabile natura antropica (esplosioni in cave estrattive) rilevati nel corso dell'anno. Il valore ottenuto di M_C per il BSI nel 2015 è pari a 1.3, con b = 0.95 ± 0.01 e a = 5.13. In Tabella 4 vengono riportati i valori delle magnitudo minime di completezza dal 2009. Come si può notare il valore è diminuito negli anni, fatto dovuto all'incremento delle stazioni della Rete Sismica Nazionale (RSN).

ANNO	M _C
2009	1.6
2010	1.6
2011	1.5
2012	1.4
2013	1.2
2014	1.2
2015	1.3
N	

Tabella 4 I valori delle magnitudo minime di completezza del BSI a partire dal 2009.**Table 4** The values of the minimum completeness magnitudes of BSI starting from 2009.

In Figura 3 viene mostrato l'andamento della magnitudo minima di completezza M_C nel corso del 2015: si può osservare come il *trend* sia abbastanza regolare a meno di alcuni picchi significativi che evidenziano i momenti di maggiore attività sismica o le principali sequenze. Per evitare un effetto di bordo nel calcolo della media mobile (calcolata su finestre di 500 punti), sono stati inclusi anche gli ultimi due mesi del 2014.

Figura 3 Andamento della magnitudo minima di completezza M_C nel corso del 2015. L'andamento risulta abbastanza regolare a meno di alcuni picchi significativi che evidenziano i momenti di maggiore attività sismica. **Figure 3** M_C trend during 2015. The trend is quite regular except for some significant peaks that highlight the moments of greatest seismic activity.

4. Qualità delle localizzazioni

L'analisi della qualità delle localizzazioni del BSI 2015 è stata effettuata utilizzando i criteri proposti da Amato and Mele [2008]. I risultati ottenuti sono mostrati nella mappa in Figura 4 che mostra le localizzazioni degli eventi di M_L ≥ 2.0 contenuti nel BSI 2015. Ogni evento è rappresentato con un simbolo che è funzione della qualità della localizzazione, della magnitudo e della profondità ipocentrale. Per la stima della qualità della localizzazione di un evento sismico si utilizza un unico indice Q = Q1 + Q2, variabile da -5 a + 5. Tale indice Q è la combinazione di due fattori: Q1 (Tabella 5) che si basa sugli errori formali ottenuti al termine della localizzazione (RMS dei residui ed errori orizzontale e verticale della localizzazione) e Q2 (Tabella 6) che considera la geometria della rete sismica intorno all'epicentro (gap azimutale e distanza della stazione più vicina confrontata con la profondità ipocentrale).

Indicatori	RMS pesato	Errore orizzontale	Errore verticale	Numero di fasi (NPH)	Q1
А	< 0.15 s	< 1.0 km	< 2.0 km	≥ 4	1.5
В	< 0.30 s	< 2.5 km	< 5.0 km	≥ 4	0.5
С	< 0.50 s	< 5.0 km	< 5.0 km	≥ 4	-0.5
D	≥ 0.50 s	≥ 5.0 km	≥ 5.0 km	< 4	-1.5

Tabella 5 Indice di qualità Q1 utilizzato per classificare le localizzazioni ipocentrali in funzione della bontà della soluzione e degli errori formali. Le condizioni poste per le classi A, B e C sono da considerare tutte necessarie. Un terremoto ha qualità D se non viene rispettata anche solo una delle condizioni necessarie per l'assegnazione della classe C; quindi per la classificazione nella classe D è sufficiente che si verifichi anche una sola condizione. Table 5 Quality ranking Q1 used to classify hypocenters according to goodness-of-fit and formal errors. The conditions for classes A, B and C are all necessary. An earthquake has quality D if at least one of the conditions necessary to obtain class C is not verified; therefore, for the classification in class D it is sufficient that even a single condition occurs.

Indicatori	Massimo gap azimutale	Distanza della stazione più vicina	Numero di fasi (NPH)	Q2
А	< 90°	< 5 km oppure < profondità	> 8	3
В	< 135°	< 10 km oppure < 2 ×profondità	> 8	1
С	< 180°	< 100 km	> 8	-1
D	≥ 180°	≥ 100 km	< 8	-3

Tabella 6 Parametro di qualità Q2 usato per classificare gli ipocentri in funzione della geometria delle stazioni utilizzate per la localizzazione, della distanza dall'epicentro della stazione più vicina (eventualmente paragonata con la profondità dell'ipocentro) e del numero di fasi. Tutte le condizioni per le classi A, B e C sono da considerarsi necessarie per quella classe.

Table 6 Quality ranking Q2 used to classify hypocenters according to stations geometry, distance of the closest station from the epicenter, and number of phases. All the conditions for classes A, B and C are necessary.

Come conseguenza dell'incremento del numero di stazioni della RSN, dal 2015 i due fattori Q1 e Q2 vengono calcolati utilizzando dei criteri più stringenti rispetto a quelli utilizzati per le analoghe analisi degli anni precedenti; tali criteri sono gli stessi usati attualmente in Hypoinverse-2000 [Klein, 2002]. Tuttavia, la qualità delle localizzazioni mostrate in Figura 4 è confrontabile con quella degli anni precedenti: l'attività sismica alpina e appenninica viene localizzata con degli indici di qualità buoni, al contrario delle localizzazioni ipocentrali in mare, lungo le coste e nelle zone di confine che hanno invece un indice di qualità basso.

Figura 4 Mappa dei terremoti registrati dalla RSN nel corso del 2015 con magnitudo $M_L \ge 2.0$. La dimensione dei simboli è proporzionale alla magnitudo, il colore indica la qualità della localizzazione, la forma indica la profondità. **Figure 4** Map of the earthquakes with magnitude $M_L \ge 2.0$, recorded by the RSN in 2015. The size of the symbols is proportional to the magnitude, the color indicates the quality of the location, and the shape indicates the depth.

5. La sismicità italiana nel 2015

Come accennato in precedenza, nel 2015 il territorio italiano è stato interessato da oltre 15000 eventi sismici (Figura 5), con una distribuzione temporale illustrata nell'istogramma di Figura 6. Rispetto al numero totale di eventi, circa 5700 hanno avuto una magnitudo compresa tra 1.5 e 3.9, mentre circa 9800 sono stati quelli con magnitudo inferiore a 1.5. Nella Figura 7a sono rappresentati i quindici eventi (Tabella 7) che hanno avuto una magnitudo maggiore o uguale a 4. Nella Figura 7b vengono mostrati i tre eventi localizzati a una profondità superiore ai 400 km. Rispetto agli anni precedenti il numero totale degli eventi con M \geq 4 risulta sensibilmente diminuito; infatti, sia nel 2013 sia nel 2014 sono stati registrati oltre ventimila eventi.

Di seguito vengono riportate alcune informazioni supplementari sugli eventi della Tabella 7. Il primo ($M_w = 4.3$) si è verificato il 23 gennaio tra le province di Bologna e Prato alle 06:51 UTC ed è stato chiaramente avvertito anche nel centro del capoluogo senza tuttavia aver prodotto danni. È stato seguito da una sequenza di alcune centinaia di eventi (per dettagli vedere il capitolo 6).

Il 6 febbraio alle 08:52 UTC un evento con M_w = 4.7 è stato localizzato al largo delle Isole Eolie, ad oltre 270 km di profondità.

Il 28 febbraio alle 03:16 UTC un evento con M_w = 4.1 ha interessato la Piana del Fucino: l'evento è stato chiaramente avvertito in tutta la provincia dell'Aquila e in quella di Frosinone.

Il 15 aprile alle 16:57 UTC è occorso un evento di magnitudo M_w = 4.3 nel Mar Tirreno, al largo della costa calabra occidentale e ad una profondità di oltre 250 km.

Figura 5 Mappa della sismicità italiana e di confine estratta dal Bollettino Sismico Italiano del 2015. I parametri ipocentrali sono disponibili in http://terremoti.ingv.it/iside [ISIDe working group, 2016]. Figure 5 Map of Italian and border seismicity extracted from the Italian Seismic Bulletin of 2015. Hypocentral parameters are available at http://terremoti.ingv.it/en/iside [ISIDe working group, 2016].

Figura 6 Distribuzione temporale degli eventi sismici nel 2015. Figure 6 Temporal distribution of seismic events in 2015.

Figura 7 a) A sinistra i maggiori eventi sismici registrati in Italia nel 2015 (come detto nel capitolo 3, sono stati rimossi gli eventi di confine); b) A destra la mappa dei tre eventi più profondi avvenuti in Italia nel 2015. Figure 7 a) On the left, the major seismic events recorded in Italy during 2015 (as mentioned in chapter 3, border events have been removed); b) On the right, the map of the three deepest events that occurred in Italy during 2015.

Bollettino Sismico Italiano 2015

Time (l	UTC)	Latitude	Longitude	Depth	Author	Magn	itude
23/01/2015	06:51:20	44.128	11.121	9.6	BULLETTIN-INGV	Mw	4.3
06/02/2015	08:52:27	38.700	15.156	255.8	BULLETTIN-INGV	Mw	4.7
28/02/2015	03:16:18	41.950	13.534	10.6	BULLETTIN-INGV	Mw	4.1
15/04/2015	16:57:03	38.906	15.472	256.6	BULLETTIN-INGV	Mw	4.3
24/04/2015	15:02:54	44.250	11.909	22.2	BULLETTIN-INGV	ML	4.0
09/05/2015	08:22:42	38.605	15.364	214.7	BULLETTIN-INGV	ML	4.5
11/05/2015	08:26:30	37.183	16.790	46.9	BULLETTIN-INGV	Mw	4.4
29/05/2015	13:07:56	42.965	14.384	14.6	BULLETTIN-INGV	Mw	4.2
02/08/2015	06:58:06	39.400	15.738	247.3	BULLETTIN-INGV	ML	4.0
03/08/2015	07:27:49	39.148	16.490	19.2	BULLETTIN-INGV	Mw	4.0
14/10/2015	10:20:51	38.816	14.830	300.7	BULLETTIN-INGV	ML	4.2
16/10/2015	00:16:24	39.424	15.731	249.6	BULLETTIN-INGV	Mw	4.4
06/12/2015	03:22:49	42.408	15.197	10.0	BULLETTIN-INGV	Mw	4.2
06/12/2015	16:24:39	42.401	15.239	12.0	BULLETTIN-INGV	Mw	4.4
20/12/2015	09:46:04	38.342	13.566	22.7	BULLETTIN-INGV	Mw	4.2

 Tabella 7 Lista degli eventi con magnitudo maggiore o uguale a 4 registrati in Italia nel 2015.

Table 7 List of events with magnitude greater than or equal to 4 recorded in Italy during 2015.

Il 24 aprile alle 15:02 UTC, un terremoto di magnitudo M_L = 4.0 è stato localizzato tra le province di Ravenna e Forlì-Cesena, seguito da una sequenza di oltre 80 repliche.

Tra maggio e agosto quattro eventi hanno interessato i mari circostanti il territorio italiano e precisamente: il 9 maggio alle 08:22 UTC un M_L = 4.5 è stato localizzato nel basso Tirreno ad una profondità di circa 217 km; l'11 maggio alle 08:26 UTC, un M_w = 4.4 nel Mar Ionio a circa 47 km di profondità; il 29 maggio alle 13:07 UTC, un M_w = 4.2 nel Mar Adriatico di fronte a San Benedetto del Tronto e infine il 2 agosto alle 06:58 UTC un evento di magnitudo M_L = 4.0 nel Mar Tirreno, al largo della costa calabra occidentale, ad una profondità di circa 247 km.

Il 3 agosto alle 07:27 UTC, si è verificato un terremoto di magnitudo M_L = 4.0 tra le province di Cosenza e Catanzaro a sud della Sila, seguito da una sequenza di oltre 80 repliche di piccola magnitudo.

Il 14 e il 16 ottobre si sono verificati due eventi profondi, tipici del Mar Tirreno meridionale [Cimini and Marchetti, 2006; Chiarabba et al., 2008]: il primo alle 10:20 UTC con M_L = 4.2 a 300 km di profondità, il secondo alle 00:16 UTC con M_w = 4.4 a circa 250 km di profondità.

Il 6 dicembre sono da segnalare due terremoti di M_w = 4.2 e di M_w = 4.4, occorsi entrambi nel Mar Adriatico a nord delle Isole Tremiti: il primo alle ore 03:22 UTC e il secondo alle ore 16:24 UTC. In seguito si sono verificati alcuni eventi nella stessa area di magnitudo maggiore di 3.5, una vera e propria sequenza sismica durata pochi giorni.

L'ultimo evento dell'anno di magnitudo superiore a 4 si è verificato a NE di Palermo nel basso Tirreno il 20 dicembre alle ore 09:46 UTC con una M_w = 4.2.

Anche se non menzionati nella lista di Tabella 7, ci sono un paio di eventi degni di nota: il primo localizzato in Slovenia in prossimità del confine italiano il 29 agosto alle ore 18:47 UTC con $M_L = 4.3$ avvertito chiaramente in buona parte del Friuli e il secondo con $M_b = 4.8$ il 1° novembre alle 07:52 UTC a NE della Slovenia. Questo evento ha destato particolare interesse e preoccupazione perché è stato individuato nella zona di Obrezje, a 26 chilometri da Krško, dove si trova una centrale nucleare attiva.

I TDMT e i meccanismi focali, calcolati con i primi arrivi, di alcuni degli eventi sopra descritti, sono riportati nei report che accompagnano le uscite quadrimestrali del BSI [Margheriti et al., 2016a; 2016b; 2016c] e nell'articolo di Ciaccio et al. [2021].

6. Sequenze sismiche del 2015

L'individuazione di eventuali sequenze sismiche presenti nel BSI 2015 è stata effettuata tramite l'algoritmo di *declustering* di Reasenberg [1985] a cui ha fatto seguito una successiva selezione utilizzando dei criteri, definiti dagli analisti del BSI, che verranno illustrati nel paragrafo 6.1.

L'algoritmo utilizzato analizza spazialmente e temporalmente tutti gli eventi sismici presenti in un catalogo, individua eventuali *cluster* che vengono rappresentati da un terremoto equivalente. Due eventi risultano associabili in un *cluster* se vicini nello spazio e nel tempo.

L'intervallo di tempo nel quale due eventi possono essere associati varia da 2 a 10 giorni a seconda della loro magnitudo; inoltre, due eventi di magnitudo M1 e M2 sono associati nello stesso *cluster* se la distanza tra i due ipocentri è inferiore alla somma dei raggi r1 e r2 delle faglie circolari equivalenti ai due terremoti secondo il modello di Kanamori and Anderson [1975].

Le distanze minime di associazione dei due eventi vengono corrette tenendo in considerazione gli errori orizzontali e verticali della localizzazione ipocentrale. I termini correttivi utilizzati in questa analisi sono rispettivamente di 2 e 5 chilometri.

L'evento equivalente ha come coordinate ipocentrali la media pesata delle coordinate degli eventi maggiori della sequenza, mentre la magnitudo equivalente si ottiene dal calcolo del momento sismico totale rilasciato dal *cluster* che corrisponde alla sommatoria dei momenti sismici degli eventi appartenenti alla sequenza stessa.

Ricordiamo che per sequenza si intende un gruppo di terremoti individuato con l'algoritmo di Reasenberg, a prescindere quindi dalla presenza o meno di un *mainshock* all'interno del gruppo. La Figura 8 mostra le 30 sequenze sismiche del 2015 individuate grazie all'analisi sopra descritta.

Figura 8 Mappa delle 30 sequenze sismiche individuate nel BSI 2015 tramite l'algoritmo di *declustering* di Reasenberg [1985]. Il colore dei cerchi indica la profondità degli eventi; la loro dimensione è proporzionale alla magnitudo.

Figure 8 Map of the 30 seismic sequences identified in BSI 2015 by applying the Reasenberg declustering algorithm [1985]. Circles are color-coded according to the depth of the earthquakes; their size is proportional to the magnitude.

6.1 Criteri di selezione

L'analisi per l'individuazione delle sequenze sismiche viene effettuata in due fasi successive:

- prima fase detta di "*declustering*": si utilizza l'algoritmo di Reasenberg [1985], che consente di evidenziare un certo numero di raggruppamenti di eventi sismici;
- seconda fase in cui si prosegue effettuando un'ulteriore selezione, che riduce notevolmente il numero dei cluster, sulla base di almeno uno di questi criteri:
 - sequenze sismiche con magnitudo equivalente maggiore o uguale a 3.0 ed almeno 10 terremoti;
 - sequenze sismiche di almeno 20 terremoti e con almeno uno di magnitudo M ≥ 2.5.

Nella individuazione delle sequenze sismiche si è posta molta attenzione nell'evidenziare ed escludere tutti gli eventi di probabile natura antropica (circa 301 esplosioni tra scoppi in cava e brillamenti di ordigni bellici), così come tutti i terremoti con profondità ipocentrale ≥ 38 km (corrispondente al valore medio della profondità della Moho nel modello a strati piani e paralleli utilizzato per la localizzazione dei terremoti del BSI) e la sismicità di confine. Il risultato finale è la lista delle 30 sequenze sismiche mostrate in Tabella 8.

n°	Area epicentrale Comune	l evento	Durata	n°ev.	Ev	ento equ	uivalente	5	Evento di magnitud massima	0	Secondo evento per magnitudo	
	(Provincia)	Tempo or.	(gioriii)		Lat. N	Lon. E	Prof.	M_L	Tempo or.	ML	Tempo or.	ML
1	Sansepolcro (Arezzo)	150118 21:59	12.91	43	43.53	12.15	8.64	3.0	150131 19:17	2.5	150131 05:07	2.3
2	Castiglione dei Pepoli (Bologna)	150123 02:15	33.13	289	44.14	11.14	9.37	4.3	150123 06:51	4.0	150123 17:13	3.4
3	Predappio-Meldola (Forlì-Cesena)	150125 22:50	47.94	67	44.11	12.03	21.19	3.5	150224 22:38	3.3	150225 02:51	2.6
4	Gaggio Montano (Bologna)	150214 15:12	151.88	985	44.19	10.91	15.51	4.2	150416 15:01	3.3	150322 00:50	3.1
5	Firenzuola (Firenze)	150217 18:14	1.69	45	44.19	11.42	10.64	3.8	150217 19:42	3.7	150217 18:14	2.6
6	Mercatale-Tavarnelle (Firenze)	150303 22:38	0.98	21	43.60	11.18	9.20	3.7	150304 00:00	3.6	150303 23:51	3.3
7	Norcia (Perugia)	150330 20:43	7.89	38	42.72	13.10	10.20	3.5	150331 00:39	2.6	150330 23:30	2.6
8	Sora (Frosinone)	150331 05:54	72.91	51	41.76	13.56	9.14	3.3	150426 23:42	3.2	150427 21:45	2.2
9	Alpi Cozie (confine Italia-Francia)	150401 22:12	37.39	31	44.50	6.72	10.00	3.4	150411 05:33	3.2	150401 22:12	2.8
10	Faenza (Ravenna)	150424 12:51	24.33	109	44.25	11.92	21.12	4.0	150424 15:02	3.9	150424 15:34	3.1
11	Spoleto (Perugia)	150502 19:39	29.70	21	42.74	12.76	9.45	3.0	150504 14:39	2.8	150504 14:02	2.6
12	Sassoferrato (Ancona)	150506 19:46	5.12	74	43.44	12.89	27.52	3.2	150506 20:20	2.6	150507 00:19	2.5
13	Pescocostanzo (L'Aquila)	150529 20:32	48.28	49	41.90	14.07	9.83	3.3	150625 02:07	2.8	150701 03:51	2.6
14	Sampeyre (Cuneo)	150607 23:03	20.25	27	44.61	7.24	14.10	3.1	150617 22:04	2.9	150618 03:53	2.3
15	Morano Calabro (Cosenza)	150614 09:20	31.80	22	39.90	16.13	8.90	2.8	150627 18:04	2.4	150715 16:16	2.1
16	Montese (Modena)	150620 03:42	26.90	23	44.30	10.96	11.83	3.2	150620 07:54	2.9	150620 05:11	2.6
17	Mercatello sul Metauro (Pesaro e Urbino)	150625 17:54	12.59	69	43.63	12.35	8.97	2.9	150625 18:12	2.0	150626 03:33	2.0
18	Città di Castello (Perugia)	150705 01:23	4.03	83	43.54	12.29	11.92	3.6	150705 05:03	3.4	150705 04:28	3.1
19	Gaggio Montano (Bologna)	150721 10:42	94.07	151	44.18	10.90	15.74	3.8	150722 12:57	3.6	150920 14:32	3.2
20	Pescocostanzo (L'Aquila)	150722 02:08	48.44	53	41.91	14.07	8.88	3.3	150727 03:19	2.7	150731 12:27	2.6
21	Riva del Garda (Trento)	150801 20:47	12.36	25	45.91	10.78	8.96	3.6	150801 20:47	3.6	150802 13:47	2.4

n°	Area epicentrale Comune	l evento	Durata	n°ev.	Ev	ento eq	uivalente	e	Evento di magnitud massima	lo	Secondo evento per magnitudo	r
	(Provincia)	Tempo or.	(giorni)		Lat. N	Lon. E	Prof.	ML	Tempo or.	ML	Tempo or.	ML
22	Parenti (Cosenza)	150803 07:27	50.50	78	39.15	16.50	12.02	4.0	150803 07:27	4.0	150803 07:30	2.8
23	Alimena (Palermo)	150804 23:12	1.23	20	37.65	14.16	14.30	3.3	150804 23:36	3.1	150805 19:47	2.7
24	Visso (Macerata)	150815 16:37	5.44	33	42.92	13.10	10.03	3.5	150815 17:51	2.9	150815 16:59	2.9
25	Mercatello sul Metauro (Pesaro e Urbino)	150918 19:24	40.69	299	43.63	12.34	8.57	3.9	150919 07:12	3.7	150918 19:24	3.4
26	Città di Castello (Perugia)	151024 19:52	10.94	20	43.50	12.26	7.94	2.6	151024 20:10	1.9	151024 22:31	1.9
27	Strongoli (Crotone)	151027 01:30	0.33	32	39.28	17.01	21.24	3.1	151027 02:55	2.7	151027 08:50	2.6
28	Pescara del Tronto (Ascoli Piceno)	151120 03:20	41.54	114	42.74	13.22	10.17	3.8	151120 05:03	2.6	151120 07:20	2.6
29	Mar Adriatico (Vasto-Termoli)	151206 03:21	11.35	26	42.40	15.21	11.21	4.4	151206 16:24	4.2	151206 03:21	3.8
30	Città di Castello (Perugia)	151216 07:12	15.18	41	43.46	12.33	8.26	3.4	151222 10:57	2.5	151221 05:59	2.4

Tabella 8 Elenco dei clusters in ordine cronologico individuati nel BSI 2015 con l'algoritmo di Reasenberg [1985]. La tabella riporta il numero d'ordine del cluster, l'area interessata dalla seguenza, il tempo origine del primo evento della sequenza, la durata della sequenza in giorni e frazioni di giorno, il numero di eventi associati con magnitudo M ≥ 1.5, i parametri del terremoto equivalente che riassume le caratteristiche mediate della sequenza, il tempo origine e la magnitudo dei due eventi maggiori della sequenza. La magnitudo dell'evento equivalente è ottenuta sommando il rilascio di momento sismico totale della sequenza. Sono stati selezionati i cluster con magnitudo equivalente M \ge 3.0 e almeno 10 eventi e i cluster con almeno 20 eventi e almeno un terremoto di M \ge 2.5. Table 8 Chronological list of clusters detected in BSI 2015 by using the Reasenberg algorithm [1985]. The table reports the cluster identification number, the region struck by the sequence, the origin time of the first event, the duration of the sequence in days, the number of events with magnitude $M \ge 1.5$, the parameters of the equivalent earthquake, the origin time and magnitude of the two major earthquakes in the sequence. The magnitude of the equivalent earthquake is obtained computing the total moment release of the sequence. We selected clusters with equivalent magnitude $M \ge$

3.0 and at least 10 earthquakes and clusters with at least 20 events and at least an event of magnitude $M \ge 2.5$.

La Tabella 9 riporta i cluster significativi con almeno un evento di magnitudo M ≥ 3.5 ma composti da meno di 10 eventi (o da eventi la cui localizzazione è di bassa qualità) e che per questo sono stati esclusi dall'analisi delle sequenze. Si tratta comunque di un tipo di sismicità che caratterizza determinate aree del territorio italiano e che merita di essere messa in evidenza, oltre a trattarsi di eventi sismici che, per la loro magnitudo, spesso hanno avuto un notevole risentimento tra la popolazione.

La Tabella 9 contiene l'elenco cronologico di questi clusters. Da notare che tre di essi, evidenziati da un asterisco (nº 3, 12 e 17), hanno però un numero di eventi maggiore di 10. Si tratta di terremoti localizzati in aree geografiche in cui, per diversi motivi, la distribuzione di stazioni sismiche non è ottimale, con una inevitabile ricaduta sulla qualità degli errori di localizzazione. Il numero di terremoti di questi tre *clusters*, inizialmente inferiore a 10, dopo un successivo controllo manuale ha superato tale soglia di selezione.

nº Area onicontrolo		5 ° 01	Evento di magnitudo massima							
	Area epicentrale	n ev.	Data Tempo or.	Lat. N	Lon. E	Prof.	М			
1	Moggio Udinese (UD)	5	150130 00:45	46.386	13.174	10.4	Mw 3.8			
2	Trasacco (AQ)	1	150228 03:16	41.950	13.534	10.6	Mw 4.1			
3 *	Costa Calabra sud-orientale (RC)	16	150329 10:48	38.085	16.209	14.7	M _L 3.6			
4	Poggio Imperiale (FG)	7	150416 11:34	41.783	15.345	23.4	M _L 3.9			
5	Tirreno Meridionale	9	150419 09:31	38.506	12.918	22.5	M _L 3.5			
6	Moriago della Battaglia (TV)	8	150512 02:02	45.832	12.111	9.6	M _L 3.5			
7	Staiti (RC)	1	150524 06:00	37.957	16.029	62	M _L 3.9			
8	Costa Abruzzese (TE)	1	150529 13:07	42.965	14.384	14.6	Mw 4.2			
9	Costa Garganica (FG)	6	150708 02:53	42.091	15.521	21.7	Mw 3.6			
10	Isole Eolie (ME)	9	150808 22:46	38.551	14.270	19.5	M _L 3.8			
11	Alano di Piave (BL)	5	150818 20:10	45.905	11.902	7.3	M _L 3.6			
12 *	Faenza (RA)	15	150824 03:43	44.259	11.939	21.7	M _L 3.6			
13	Tirreno Meridionale	2	150829 20:25	38.541	12.120	22.0	M _L 3.9			
14	Tavarnelle Val di Pesa (FI)	3	150913 01:04	43.605	11.230	8.9	M _L 3.8			
15	Costa Siracusana (SR)	8	150920 22:27	37.156	15.614	22.6	M _L 3.8			
16	Mirandola (MO)	2	151020 10:35	44.897	11.108	6.7	M _L 3.5			
17 *	Confine Italia-Francia	16	151106 04:03	44.471	6.706	11	Mw 3.6			
18	Mar Ionio Meridionale	9	151107 22:36	37.255	15.884	22.8	M _L 3.5			
19	Montescudo - Monte Colombo (RN)	3	151111 18:13	43.911	12.534	43.4	M _L 3.5			
20	Costa Siciliana centro-settentrionale (PA)	2	151220 09:46	38.342	13.566	22.7	Mw 4.2			

Tabella 9 Elenco dei clusters più significativi avvenuti nel 2015, con almeno un evento di magnitudo $M \ge 3.5$, non presenti nella Tabella 8.

Table 9 List of most significant clusters in 2015 with at least one event of magnitude $M \ge 3.5$ not included in Table 8.

Tra essi, tre hanno avuto una magnitudo maggiore di 4.0: quello del 28 febbraio in provincia dell'Aquila, quello del 29 maggio al largo della costa teramana e infine quello del 20 dicembre, in mare, al largo di Palermo (n° 2, 8 e 20 in Tabella 9).

6.2 Principali sequenze sismiche nel 2015

Le 30 sequenze sismiche selezionate nel corso del 2015 vengono di seguito presentate procedendo da nord verso sud rispetto al territorio italiano. Di ognuna di esse sono descritte le principali caratteristiche: inizio e durata della sequenza, numero di terremoti ed eventi principali.

6.2.1 Italia settentrionale

Dieci sequenze (un terzo esatto del totale) hanno interessato l'Italia settentrionale nel 2015. Sono state suddivise in sequenze dell'Arco alpino, dell'Appennino tosco-emiliano e della Romagna.

6.2.1.1 Arco alpino

Tre sequenze sono avvenute nell'intero arco alpino durante il 2015. Due di queste sono occorse in prossimità dei confini italo-francesi. La sequenza delle Alpi Cozie (sequenza nº 9 in Figura 9 e Tabella 8), iniziata il primo di aprile, ricade praticamente in territorio francese, ma a pochissimi chilometri da alcuni comuni italiani della provincia di Cuneo (motivo per il quale è stata inserita nella tabella delle seguenze 2015). Durata poco più di un mese, ha avuto un evento di magnitudo massima M_L = 3.2 con un totale di 31 repliche. Poche decine di chilometri più a NE troviamo invece una sequenza interamente registrata nel territorio cuneese (sequenza nº 14 in Figura 9 e Tabella 8) che è abbastanza simile alla precedente (magnitudo massima M_I = 2.9 e 27 terremoti in totale), ma con una profondità media più elevata (poco più di 14 chilometri contro i 10 della precedente, come ben evidenziato dai differenti colori in figura).

Figura 9 Sequenze sismiche avvenute nel 2015 nel settore francese delle Alpi Cozie e nella provincia di Cuneo.

Figure 9 Seismic sequences occurred in 2015 in the French sector of the Cottian Alps and in the province of Cuneo.

La terza sequenza dell'area alpina appartiene invece al settore centrale dell'arco alpino, ovvero alla provincia di Trento. Dal 1º agosto, per una dozzina di giorni, nell'area nei pressi del comune di Riva del Garda sono stati registrati venticingue terremoti, tutti superficiali (profondità inferiore a 9 chilometri), con un picco di magnitudo M_L = 3.6 (sequenza n° 21 in Figura 10 e Tabella 8).

6.2.1.2 Appennino tosco-emiliano e Romagna

Sette sequenze hanno interessato il settore geografico comprendente l'Appennino toscoemiliano e la Romagna.

Nella Figura 11 sono state rappresentate le sequenze relative all'Appennino tosco-emiliano, quasi tutte ricadenti in provincia di Bologna.

Il 23 gennaio un terremoto di magnitudo M_L = 4.0 colpisce la provincia di Bologna in prossimità del comune di Castiglione dei Pepoli (sequenza n° 2 in Figura 11 e Tabella 8), dando origine a una delle sequenze più significative del 2015. Ben 289 eventi si sono susseguiti nella zona in poco più di un mese ad una profondità media di circa 10 chilometri.

Figura 11 Sequenze sismiche dell'Appennino toscoemiliano. Con i poligoni colorati e i riquadri piccoli sono state isolate le singole sequenze avvenute nelle stesse aree per renderle più evidenti.

Figure 11 Seismic sequences of the Tuscan-Emilian Apennines. With colored polygons and small squares, the single sequences occurring in the same areas have been isolated in order to better highlight them.

Pochi chilometri a ovest nei pressi del comune di Gaggio Montano, sempre nella provincia di Bologna, sono state registrate due sequenze che potremmo considerare quasi un *unicum* (sequenze n° 4 e n° 19 in Figura 11 e Tabella 8). La prima, cominciata nel mese di febbraio, ha avuto un evento di magnitudo massima $M_L = 3.3$; mentre la seconda, nel mese di luglio, uno di magnitudo massima $M_L = 3.6$. Probabilmente questo secondo evento ha ridato impulso ad una sequenza che si era appena esaurita e ha generato la seconda.

Il totale dei terremoti delle due sequenze è di 1136 eventi con una profondità media di oltre 15 chilometri che aumenta procedendo da NW verso SE (come evidenziato in Figura 11 dalla colorazione degli epicentri in base alla profondità ipocentrale).

L'ultima sequenza della Figura 11 (sequenza n° 16 anche in Tabella 8) del giugno 2015 è localizzata tra la provincia di Bologna e quella di Modena, con una magnitudo massima M_L = 2.9 e una profondità media di poco oltre i 10 chilometri.

Spostandosi verso il settore romagnolo troviamo tre sequenze ben evidenziate in Figura 12.

Figura 12 Sequenze sismiche del versante romagnolo avvenute durante il 2015.

Figure 12 Seismic sequences of the Romagna side occurred during 2015.

Molto concentrata spazialmente e temporalmente è stata la sequenza nº 5 nei pressi del comune di Firenzuola (Figura 12 e Tabella 8). Tra il 17 e il 18 febbraio sono stati registrati 45 terremoti, il più forte dei quali con una magnitudo $M_{\rm I}$ = 3.7 e una profondità media di circa 10 chilometri. Proprio sotto il comune di Predappio, nella provincia di Forlì-Cesena, si è verificata, nei mesi di gennaio, febbraio e marzo, una sequenza che ha avuto una magnitudo massima M_1 = 3.3 (sequenza nº 3 in Figura 12 e Tabella 8). Un totale di sessantasette terremoti tutti piuttosto profondi (in media oltre 21 chilometri).

Profondità medie molto simili per la sequenza nº 10 in provincia di Ravenna (Figura 12 e Tabella 8), ma differente per altri parametri: ben 109 terremoti in ventiquattro giorni e una magnitudo massima registrata il 24 aprile 2015 di M_L = 3.9.

6.2.2 Italia centrale

L'Italia centrale, con sedici sequenze, rappresenta da sola più della metà di tutte le sequenze del 2015. Molte delle sue regioni sono state interessate da questo tipo di sismicità oltre a quella diffusa, tipica dell'Appennino centrale, che verrà trattata nel capitolo 7.

6.2.2.1 Toscana centrale

Nei pressi del comune di Mercatale, in provincia di Firenze, in meno di un giorno sono stati registrati 21 terremoti con una magnitudo massima M_L = 3.6 (sequenza n° 6 in Figura 13 e Tabella 8). La profondità media degli eventi è di circa 9 chilometri.

Figura 13 Sequenza sismica in provincia di Firenze vicino ai comuni di Mercatale e Tavarnelle. Ventuno terremoti concentrati nella notte tra il 3 e il 4 marzo 2015. Figure 13 Seismic sequence in the province of Florence near the small towns of Mercatale and Tavarnelle. Twenty-one earthquakes concentrated on the night between 3 and 4 March 2015.

6.2.2.2 Appennino umbro-marchigiano

Spesso questo settore dell'Appennino centrale è teatro di sequenze sismiche. Undici sono quelle relative al 2015.

Proprio all'estremità nord dell'Appennino umbro-marchigiano troviamo la prima sequenza in ordine temporale dell'anno preso in considerazione (sequenza nº 1 in Figura 14 e Tabella 8). Si tratta della sequenza di Sansepolcro e San Giustino nel mese di gennaio che ha visto in meno di due settimane l'occorrenza di quarantatré terremoti con un picco massimo di magnitudo M_L = 2.5. Meno di 9 chilometri la profondità media degli eventi.

Figura 14 Sequenza sismica in provincia di Arezzo e le tre sequenze di Città di Castello.

Figure 14 Seismic sequence in the province of Arezzo and the three sequences of Città di Castello.

Tutte in provincia di Perugia, e tutte nelle vicinanze del comune di Città di Castello, le altre 3 sequenze di Figura 14. Prima e più significativa della serie è quella degli inizi di luglio. In quattro giorni sono stati registrati ben 83 eventi sismici con una magnitudo massima $M_L = 3.4$ (sequenza n° 18 in Figura 14 e Tabella 8) con una profondità media di circa 12 chilometri. Caratteristiche simili per le altre due sequenze (sequenze n° 26 e n° 30 in Figura 14 e Tabella 8) che hanno avuto magnitudo massima pari a $M_L = 1.9$ la prima e $M_L = 2.5$ la seconda con 20 e 41 terremoti rispettivamente. Circa 8 chilometri la profondità media per entrambe.

Nella Figura 15 viene rappresentata la sequenza registrata nella zona tra i comuni di Sassoferrato e Genga, entrambi in provincia di Ancona, che comprende le famose grotte carsiche di Frasassi (sequenza n° 12 in Figura 15 e Tabella 8).

Figura 15 Sequenza sismica tra i comuni di Sassoferrato e Genga in provincia di Ancona. È la sequenza con la profondità media maggiore del 2015.
Figure 15 Seismic sequence between the municipalities of Sassoferrato and Genga in the province of Ancona. It is the sequence with the greatest average depth of 2015.

Settantaquattro sono stati i terremoti in poco più di cinque giorni con una magnitudo massima che non ha superato M_L = 2.6. Caratteristica, tuttavia, di questa sequenza è la profondità media degli eventi che ha superato i 27 chilometri risultando la sequenza con la sismicità più profonda dell'intero anno.

Due sequenze sono avvenute nella provincia di Perugia nel corso del 2015. La prima in ordine di tempo si è verificata alla fine di marzo ed è durata per circa una settimana. Trentotto terremoti con una magnitudo massima di M_L = 2.6 e una profondità media di 10 chilometri (sequenza n° 7 in Figura 16 e Tabella 8). Concentrata proprio nei pressi del comune di Spoleto invece la seconda (sequenza n° 11 in Figura 16 e Tabella 8). I ventuno terremoti si sono succeduti nell'arco del mese di maggio riportando una magnitudo massima M_L = 2.8 e una profondità media poco al di sotto dei 10 chilometri.

Figura 16 Sequenze sismiche relative alle provincie di Perugia, Macerata, Ascoli Piceno e Rieti. Figure 16 Seismic sequences related to the provinces of Perugia, Macerata, Ascoli Piceno and Rieti.

Le altre due sequenze della Figura 16 riguardano la provincia di Macerata e quella di Ascoli Piceno. Proprio il giorno di Ferragosto si è verificato l'evento più significativo con $M_1 = 2.9$ che ha alimentato la sequenza nei pressi del comune di Visso (sequenza nº 24 in Figura 16 e Tabella 8). In tutto trentatré terremoti in poco più di cinque giorni. Più lunga e con un maggior numero di eventi (centoquattordici terremoti in quarantuno giorni) è stata invece la sequenza avvenuta tra i comuni di Pescara del Tronto e Accumoli (sequenza nº 28 in Figura 16 e Tabella 8) con un terremoto di magnitudo massima M_L = 2.6. Comparabile la profondità media di entrambe le sequenze intorno ai 10 chilometri.

Nella provincia di Pesaro e Urbino, in particolare nei pressi del comune di Mercatello sul Metauro, si sono verificate, a distanza di qualche mese l'una dall'altra, due seguenze come mostrato in Figura 17.

Figura 17 Sequenze sismiche relative alle provincie di Pesaro e Urbino, entrambe ricadenti nei pressi del comune di Mercatello sul Metauro. Figure 17 Seismic sequences relating to the provinces of Pesaro and Urbino, both falling near the municipality of Mercatello sul Metauro.

La prima delle due, a cavallo tra giugno e luglio, ha registrato sessantanove terremoti (sequenza n° 17 in Figura 17 e Tabella 8) con una magnitudo massima M_L = 2.0 tra le più basse relativamente alle sequenze del 2015. La seconda, durata di oltre un mese, ha avuto duecentonovantanove eventi con magnitudo massima pari a M_L = 3.7, ben più alta della precedente (sequenza nº 25 in Figura 17 e Tabella 8). Molto simili le profondità medie di circa 9 chilometri per entrambe.

6.2.2.3 Appennino abruzzese

L'Abruzzo e il frusinate sono i settori del territorio nazionale teatro delle ultime sequenze che nel 2015 hanno interessato l'Appennino centrale.

Proprio al confine tra Lazio e Abruzzo, in prossimità del comune di Sora, troviamo una sequenza che inizia alla fine di marzo e si protrae per quasi due mesi (sequenza n° 8 in Figura 18 e Tabella 8). Cinquantuno terremoti che hanno avuto come magnitudo massima M_L = 3.2 e una profondità media di circa 9 chilometri.

Figura 18 Sequenze sismiche dell'Appennino abruzzese e del confine Lazio - Abruzzo.

Figure 18 Seismic sequences of the Abruzzo Apennines and the Lazio - Abruzzo border region.

Nella stessa porzione di territorio si sono attivate invece le sequenze "gemelle" della provincia dell'Aquila, nei pressi del comune di Pescocostanzo (sequenze n° 13 e n° 20 in Figura 18 e Tabella 8). Molto simili nella durata (rispettivamente 49 e 53 giorni), nella magnitudo massima (rispettivamente $M_L = 2.8$ e $M_L = 2.7$) e nella profondità media (rispettivamente 9.8 e 8.8 chilometri), identiche nel numero di terremoti occorsi (quarantotto).

6.2.2.4 Mar Adriatico

L'unica sequenza in mare registrata nel 2015 è quella di dicembre nel Mar Adriatico a circa cinquanta chilometri dalla costa prospiciente i comuni di Vasto e Termoli (sequenza n° 29 in Figura 19 e Tabella 8). Ventisei terremoti in undici giorni di profondità media intorno agli 11 chilometri che hanno fatto registrare la magnitudo massima più alta relativamente alle sequenze del 2015 ovvero $M_L = 4.2$.

Figura 19 Sequenza sismica del Mar Adriatico. L'evento di magnitudo massima (M_L 4.2) è il più alto registrato per le sequenze del 2015.

Figure 19 Seismic sequence of the Adriatic Sea. The event of maximum magnitude ($M_L 4.2$) is the highest recorded for the sequences in 2015.

6.2.3 Italia meridionale

Calabria e Sicilia sono le uniche regioni del sud Italia che sono state interessate da sequenze sismiche durante il 2015. Inoltre, solo 4 sequenze delle 30 totali hanno interessato nel 2015 l'Italia meridionale, al contrario di quanto accaduto nel 2014 in cui erano state registrate ben 13 sequenze e nel 2013 anno in cui 15 sequenze avevano interessato il sud Italia [Nardi et. al., 2020; Marchetti et. al., 2020].

6.2.3.1 Calabria

Tre risultano le sequenze registrate in territorio calabrese, una delle quali al confine con la Basilicata. Si tratta della piccola sequenza di Morano Calabro (sequenza n° 15 in Figura 20 e Tabella 8).

Figura 20 Sequenza sismica di Morano Calabro in provincia di Cosenza. Parte della sequenza ha interessato anche la provincia di Potenza in Basilicata. Figure 20 Seismic sequence of Morano Calabro in the province of Cosenza. Part of the sequence also involved the province of Potenza in Basilicata.

Un totale di ventidue terremoti tra giugno e luglio con magnitudo massima M_L = 2.4 e profondità media di circa 9 chilometri.

Scendendo lungo la punta dello stivale, tra la provincia di Cosenza e quella di Catanzaro, registriamo la sequenza iniziata ad agosto (sequenza n° 22 in Figura 21 e Tabella 8). Nei pressi del comune di Parenti sono avvenuti ben settantotto terremoti in circa cinquanta giorni. La scossa più forte, di M_L = 4.0, è tra le maggiori registrate per le sequenze nel 2015 mentre la profondità media si assesta intorno ai 12 chilometri.

Vicino al comune di Strongoli, in provincia di Crotone, l'ultima sequenza che ha interessato il territorio calabrese (sequenza n° 27 in Figura 21 e Tabella 8). Trentadue terremoti in pochissime ore con magnitudo massima M_L = 2.7 e profondità media di oltre 21 chilometri, tra le più alte registrate per il 2015.

Figura 21 Sequenze in Calabria. Caratteristica della n° 22 è l'evento di M_L = 4.0, mentre per la n° 27 degna di nota è la profondità piuttosto significativa degli eventi. **Figure 21** Calabrian sequences. Noticeable for the n ° 22 is the event of M_L = 4.0 while for the n ° 27 it is noteworthy the rather high depth of the events.

6.2.3.2 Sicilia

Nel 2015 solo una sequenza ha interessato il territorio siciliano. Si tratta di quella registrata a cavallo tra il 4 e il 5 agosto. In totale venti terremoti con magnitudo massima $M_L = 3.1$ e profondità media di 14 chilometri (sequenza n° 23 in Figura 22 e Tabella 8).

Figura 22 L'unica sequenza registrata in Sicilia, a cavallo tra il 4 e il 5 agosto 2015. L'evento principale è stato di magnitudo M_L = 3.1.

Figure 22 The only sequence recorded in Sicily, between 4 and 5 August 2015. The main event was of magnitude $M_L = 3.1$.

7. Sismicità diffusa

Anche per il 2015 è stata individuata una concentrazione di eventi sismici in una porzione piuttosto ampia dell'Appennino centrale, registrata praticamente nel corso dell'intero anno. Come evidenziato in precedenti lavori [Mele et al., 2010; Arcoraci et al., 2012; Battelli et al., 2013b; Berardi et al., 2016; Castellano et al., 2017; Marchetti et al., 2020; Nardi et al., 2020] si tratta di migliaia di piccoli terremoti (circa 3700 eventi sismici con magnitudo massima M_L = 3.3 e profondità media intorno ai 10 km) che, sebbene circoscritti a un'area piuttosto ristretta, non è stato possibile accorpare in un'unica sequenza secondo l'algoritmo di *declustering* di Reasenberg [1985], nonostante l'utilizzo di parametri di selezione più ristretti dello stesso algoritmo (un errore sulle coordinate ipocentrali di 2 km in orizzontale e 5 km in verticale). Questo tipo di sismicità diffusa viene di norma rilevato in ampie zone dell'Appennino centrale, dove la numerosa presenza di stazioni sismiche della RSN e l'alto tasso di sismicità di fondo, fa sì che questo fenomeno sia più evidente rispetto ad altre zone della penisola. La Figura 23 mostra l'area dove è presente questa sismicità diffusa.

Figura 23 Sismicità diffusa localizzata nel 2015 in un settore dell'Appennino centrale, compreso tra le province di Pesaro e Urbino, Macerata, Perugia, Rieti, Ascoli Piceno e l'Aquila.

Figure 23 Widespread seismicity located in central Apennines between the provinces of Pesaro and Urbino, Macerata, Perugia, Rieti, Ascoli Piceno and l'Aquila during 2015. Possiamo distinguere genericamente tre zone: una prima zona a nord, a ridosso della provincia di Pesaro e Urbino; una centrale tra i comuni di Foligno e Spoleto e una poco più a sud, nel triangolo compreso tra Norcia, Amatrice e Leonessa.

8. Sismicità antropica

La presenza di sismicità di origine antropica all'interno dei cataloghi sismici strumentali ha sempre costituito un grosso problema per la comunità scientifica. Gli studi sulla pericolosità sismica sono basati sulla frequenza e sull'energia rilasciata dagli eventi sismici in una determinata area. E' quindi chiaro come pericolosità e rischio sismico possano essere influenzati dalla presenza nel catalogo di eventi "fittizi" di natura antropica, anche se generalmente caratterizzati da valori di magnitudo bassa.

È indispensabile quindi un lavoro di discriminazione tra la sismicità di origine naturale e quella generata dalle attività dell'uomo presente nei cataloghi sismici [Gulia, 2010].

Questo tipo di sismicità è generalmente causato da attività legate a processi industriali, principalmente scoppi in cave estrattive, miniere e cementifici [Latorre et al., 2014; Cattaneo et al., 2014], anche se non mancano altri tipi di eventi collegati ad esplosioni, per la maggior parte brillamenti di ordigni bellici dell'ultima guerra mondiale.

Tra le tecniche usate per rimuovere questo tipo di sismicità dai cataloghi, uno dei più noti si basa sulla stima del rapporto tra la sismicità diurna rispetto a quella notturna in determinate aree [Wiemer. 2000].

Un'aumentata sismicità durante le ore in cui si svolgono le attività antropiche, così come un aumento durante i giorni lavorativi rispetto a quelli festivi, indica la possibile presenza di sismicità di origine antropica che dovrà essere esaminata e rimossa dal catalogo.

Nel BSI il riconoscimento degli eventi antropici avviene principalmente dall'osservazione dei sismogrammi che, in questi casi, presentano delle caratteristiche particolari del contenuto in frequenza del segnale [Battelli et al., 2013a; Battelli et al., 2013b]. Nel caso degli scoppi, la profondità ipocentrale viene fissata a qualche centinaio di metri. Altra discriminante è nel tipo di deformazione prodotta da una esplosione [Rocchi and Dragoni, 2017] che può essere vista come un centro di dilatazione e che quindi produce onde P sempre verso l'esterno, in maniera isotropa. Questo significa che le prime onde P prodotte da un'esplosione a raggiungere la superficie produrranno sempre una prima deformazione verso l'esterno. Un terremoto invece produce sia deformazioni verso l'esterno sia verso l'interno, a seconda della direzione rispetto al piano di faglia. Gli osservatori della rete sismica registrano quindi solo onde P con primo impulso positivo in caso di esplosione, mentre in caso di terremoto alcuni registrano un primo impulso positivo ed altri negativo⁴. Altra caratteristica è la quasi totale assenza delle onde S nel caso delle esplosioni. Nel database l'evento viene classificato come "quarry blast".

Come è stato già menzionato, nel BSI del 2015 sono stati individuati 301 eventi di origine antropica, circa il 2% della sismicità totale, numero non trascurabile e stimato per difetto in quanto potrebbero esserci altri eventi la cui discriminazione risulta più difficoltosa e quindi non conteggiati. La Figura 24 mostra che la percentuale di eventi di natura antropica presenti nel BSI è piuttosto stabile dal 2011 in poi. Situazione diversa si ha nei tre anni precedenti: 5% nel 2010 e addirittura 9% nel 2008. Nel 2009 (e anche parzialmente nel 2010) la percentuale del 2% è notevolmente influenzata dalla sequenza sismica dell'aquilano che ha fatto registrare un notevolissimo numero di eventi sismici; senza quest'ultima, la percentuale di sismicità antropica sarebbe stata maggiore del 7%. La diminuzione registrata nel periodo 2011-2015 si può spiegare

⁴ https://www.ingv.it/it/newsletter-ingv-n-3-marzo-2020-anno-xiv/i-sismografi-i-sismogrammi-e-quegli-stranirumori-antropici

con l'incremento di installazioni di stazioni sismiche della RSN che ha abbassato la soglia della magnitudo di detezione, aumentando il tasso di microsismicità registrato.

Figura 24 Percentuale di eventi di origine antropica presenti nel BSI dal 2008 al 2015. **Figure 24** Percentage of anthropogenic events in the BSI from 2008 to 2015.

Nella Figura 25 viene mostrato un esempio di evento di origine antropica, presente nel BSI del 2015, non collegato ad attività estrattive in cava. Si tratta, infatti, del ritrovamento di un ordigno bellico della Seconda guerra mondiale rinvenuto nel Mar Adriatico, ad una ventina di km al largo di Cervia (provincia di Ravenna), fatto brillare l'8 luglio alle 14.33 ora italiana⁵. L'esplosione della mina, del peso di circa 600 kg, una delle più potenti ritrovate in Adriatico, ha generato un notevole sollevamento della massa d'acqua sovrastante ed è stata registrata da numerose stazioni sismiche della RSN, alcune delle quali anche a notevole distanza, sulle Alpi.

Le registrazioni dell'esplosione, la cui stima dell'energia è stata pari a $M_L = 1.9$, sono riportate nella Figura 25. L'analisi dei sismogrammi evidenzia l'inizio impulsivo dell'onda P a tutte le stazioni sismiche causato dalla natura esplosiva dell'evento, che direziona verso l'esterno tutta l'energia generata. Altra caratteristica di questo tipo di segnali è la presenza di una fase secondaria che potrebbe essere scambiata per una fase S, ma probabilmente potrebbe riferirsi ad una conversione P-to-S. I segnali della componente verticale di alcune stazioni sismiche ubicate in Emilia-Romagna, mostrate nella Figura 25, rilevano il contenuto ad alta frequenza della registrazione dello scoppio, seguito da un altro pacchetto di onde di maggior ampiezza e bassa frequenza che potrebbero essere onde superficiali.

Figura 25 Sismogrammi della componente verticale di alcune stazioni sismiche ubicate in Emilia-Romagna relativi al brillamento in mare di un ordigno bellico.

Figure 25 Seismograms (vertical component) provided by some seismic stations located in Emilia-Romagna showing recordings of the detonation.

⁵ https://ingvterremoti.com/2015/07/09/bomba-o-non-bomba-ordigno-bellico-genera-terremoto-in-adriatico/

9. Sintesi della sismicità analizzata nel 2015

Le caratteristiche principali della sismicità presente nel BSI del 2015 sono riassunte nella Tabella 10.

	Tabella riassuntiva
Rete Sismica Nazionale	470 stazioni sismiche (vedi Tabella 2 e Allegato A per dettagli)
Terremoti localizzati	15613
Magnitudo macsima	M _L 4.7 - M _w 4.7 (evento del 6 febbraio alle Isole Eolie)
Magnitudo massima	M _L 4.5 (evento del 9 maggio nel Tirreno meridionale)
	$0.0 \le M \le 0.9$ 4609
	1.0 ≤ M ≤ 1.9 9388
Distribuzione degli eventi	2.0 ≤ M ≤ 2.9 1457
in classi di magnitudo M _L	3.0 ≤ M ≤ 3.9 144
	4.0 ≤ M ≤ 4.9 15
	M ≥ 5.0 0
Magnitudo di completezza (M _C)	1.3
Numero sequenze	30
Principali sequenze	Appennino bolognese (sequenza nº 4 in Tabella 8)
	Metauro (sequenza nº 25 in Tabella 8)
Eventi di origine antropica	301 ca

Tabella 10 Sintesi della sismicità analizzata nel BSI 2015. Table 10 Synthesis of the seismicity in the BSI 2015.

Ringraziamenti

La Figura 4 è stata realizzata con lo strumento grafico GMT [Wessel and Smith, 1991]. La Figura 5 è stata realizzata con il software Google Earth.

Acknowledgments

Figure 4 has been realized using the GMT free software [Wessel and Smith, 1991]. Figure 5 has been realized using the Google Earth software.

Bibliografia

Amato A. and F. Mele, (2008). Performance of the INGV National Seismic Network from 1997 to 2007. Annals of Geophysics, 51 (2-3), 417-431.

Arcoraci L., Battelli P., Castellano C., Marchetti A., Mele F.M., Nardi A., Pirro M., e A. Rossi, (2012). Bollettino Sismico Italiano 2009. Quaderni di Geofisica, 99, INGV, 49 pp.

- Battelli P., Arcoraci L., Berardi M., Castellano C., Marchetti A., Mele F.M., and A. Nardi, (2013a). *Seismicity resulting from anthropic activity recorded in the INGV Italian Seismic Bulletin*. FIST Geoltalia 2013, IX° Forum Italiano di Scienze della Terra, Pisa, 16-18 settembre 2013 (poster).
- Battelli P., Arcoraci L., Berardi M., Castellano C., Marchetti A., Mele F.M., Nardi A., e A. Rossi, (2013b). *Bollettino Sismico Italiano 2010*. Quaderni di Geofisica, 115, INGV, 52 pp.
- Berardi M., Arcoraci L., Battelli P., Castellano C., Marchetti A., Mele F.M., Nardi A., e A. Rossi, (2016). *Bollettino Sismico Italiano 2011*. Quaderni di Geofisica, 134, INGV, 51 pp.
- Castellano C., Arcoraci L., Battelli P., Berardi M., Marchetti A., Margheriti L., Mele F.M., Nardi A., e A. Rossi, (2017). *Bollettino Sismico Italiano* 2012. Quaderni di Geofisica, 139, INGV, 64 pp.
- Cattaneo M., E. Caffagni, S. Carannante, E. D'Alema, M. Frapiccini, C. Ladina, S. Marzorati, G. Monachesi, (2014). A catalogue of non-tectonic earthquakes in central-eastern Italy. Ann. Geophys., 57, S0328; https://doi.org/10.4401/ag-6434
- Chiarabba C., De Gori P., and F. Speranza, (2008). *The Southern Tyrrhenian Subduction Zone: Deep geometry, magmatism and Plio-Pleistocene evolution*. Earth and Planet. Sci. Lett., 268, 408-423.
- Chiaraluce L., Amato A., Carannante S., Castelli V., Cattaneo M., Cocco M., Collettini C., D'Alema E., Di Stefano R., Latorre D., Marzorati S., Mirabella F., Monachesi G., Piccinini D., Nardi A., Piersanti A., Stramondo S., e L. Valoroso, (2014). *The Alto Tiberina Near Fault Observatory* (*Northern Apennines, Italy*). Annals of Geophysics, 57, 3, 2014, S0327; https://doi.org/10.4401/ag-6426
- Ciaccio M.G., Di Stefano R., Improta L., Mariucci M.T. and BSI Working Group, (2021). First-Motion Focal Mechanism Solutions for 2015–2019 M ≥ 4.0 Italian Earthquakes. Front. Earth Sci. 9:630116. https://doi.org/10.3389/feart.2021.630116
- Cimini G.B., and A. Marchetti, (2006). *Deep structure of peninsular Italy from seismic tomography and subcrustal seismicity*. Annals of Geophysics, Supplement to Vol. 49, 331-345.
- Console R., De Simoni B., e A. Di Sanza, (1988). *Riesame della relazione magnitudo-durata*. Atti VII° Convegno G.N.G.T.S., Roma, 51-62.
- Dreger D.S., and D.V. Helmberger, (1993). *Determination of Source Parameters at Regional Distances with Single Station or Sparse Network Data*. Journ. Geophys. Res., 98, 8107-8125.
- Dreger D.S., (2003). TDMT_INV: Time Domain Seismic Moment Tensor INVersion. In: W. K. Lee, H. Kanamori, P. C. Jennings, C. Kisslinger (Eds). International Handbook of Earthquake and Engineering Seismology, Vol. 81B, 1627.
- Geological Survey-Provincia Autonoma di Trento, (1981). Trentino Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/ST
- Govoni A., Bonatto L., Capello M., Cavaliere A., Chiarabba C., D'Alema E., Danesi S., Lovati S., Margheriti L., Massa M., Mazza S., Mazzarini F., Monna S., Moretti M., Nardi A., Piccinini D., Piromallo C., Pondrelli S., Salimbeni S., Serpelloni E., Solarino S., Vallocchia M., Santulin M., and the AlpArray Working Group, (2017). *AlpArray-Italy: Site description and noise characterization*, Adv. Geosci., 43, 39–52, https://doi.org/10.5194/adgeo-43-39-2017
- Gulia L. (2010). Detection of quarry and mine blast contamination in European regional catalogues. Natural Hazards, 53, 229-249.
- Hutton L.K. and M. Boore, (1987). *The M_L scale in southern California*. Bull. Seism. Soc. Am., 77, 2074-2094.
- ISIDe Working Group, (2016). Version 1.0, https://doi.org/10.13127/ISIDe
- Kanamori H. and D.L. Anderson, (1975). *Theoretical basis of some empirical relations in seismology*. Bull. Seism. Soc. Am., 65, 1073-1095.
- Klein F. W., (2002). User's Guide to HYPOINVERSE-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes. U.S. Geological Survey Open-File Report 02–171, 123 pp.
- Latorre D., Amato A., Cattaneo M., Carannante S. and A. Michelini, (2014). *Man-induced low-frequency seismic events in Italy*. Geoph. Res. Lett., 41, 8261-8268, https://doi.org/10.1002/2014GL062044

- Marchetti A., Arcoraci L., Battelli P., Berardi M., Castellano C., Margheriti L., Mele F.M., Nardi A., e A. Rossi, (2020). *Bollettino Sismico Italiano 2013*. Quaderni di Geofisica, 159, INGV, 50 pp.
- Margheriti L., Mele F.M., Marchetti A., A. Nardi, (2016a). Bollettino Sismico Italiano (BSI), I quadrimestre 2015 (Version 1) [Data set] Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/BSI/201501
- Margheriti L., Mele F.M., Marchetti A., A. Nardi, (2016b). *Bollettino Sismico Italiano (BSI)*, *II quadrimestre 2015 (Version 1) [Data set]*. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/BSI/201502
- Margheriti L., Mele F.M., Marchetti A., A. Nardi, (2016c). Bollettino Sismico Italiano (BSI), III quadrimestre 2015 (Version 1) [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/BSI/201503
- Margheriti L. et al., (2021). Seismic Surveillance and Earthquake Monitoring in Italy. Seismological Research Letters, https://doi.org/10.1785/0220200380
- Mele F.M., Arcoraci L., Battelli P., Berardi M., Castellano C., Lozzi G., Marchetti A., Nardi A., Pirro M., e A. Rossi, (2010). *Bollettino Sismico Italiano* 2008. Quaderni di Geofisica, 85, INGV, 45 pp.
- Nardi A., Marchetti A., Modica G., Battelli P., Berardi M., Castellano C., Melorio C., Pirro M., Rossi A., Spadoni S., Arcoraci L., Lozzi G., Battelli A., Thermes C., Ciaccio M.G., Castello B., Pagliuca N., Vallocchia M., Marcocci C., Frepoli A., Bono A., Pintore S., Pietrangeli D., Lauciani V., Fares M., Moretti M., Lucente F.P., Scognamiglio L., Palombo B., Basili A., Amato A., Michelini A., Mele F.M., e L. Margheriti, (2015). *Bollettino Sismico Italiano: novità*. 34° Convegno Nazionale G.N.G.T.S., Trieste, 17-19 novembre 2015 (poster) https://www.researchgate.net/publication/284672880_Bollettino_Sismico_Italiano_novita.
- Nardi A., Arcoraci L., Battelli P., Berardi M., Castellano C., Marchetti A., Margheriti L., Mele F.M., e A. Rossi, (2020). *Bollettino Sismico Italiano 2014*. Quad. Geofis., 165: 148, https://doi.org/10.13127/qdg/165
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale OGS, (2016). North-East Italy Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/OX
- Reasenberg P., (1985). Second-Order Moment of Central California Seismicity, 1969-1982. J. Geophys. Res., 90, 5479-5495.
- Rocchi B., and M. Dragoni, (2018). *La discriminazione tra terremoti ed esplosioni sotterranee*. Tesi di Laurea Alma Mater Studiorum, Universita di Bologna.
- Scognamiglio L., Tinti E., and A. Michelini, (2009). Real-time determination of seismic moment tensor for Italian region. Bull. Seism. Soc. of Am., Vol. 99, No. 4, 2223-2242, https://doi.org/10.1785/0120080104
- Scognamiglio L., Tinti E., Michelini A., Dreger D.S., Cirella A., Cocco M., Mazza S., and A. Piatanesi, (2010). Fast Determination of Moment Tensors and Rupture History: What Has Been Learned from the 6 April 2009 L'Aquila Earthquake Sequence. Seismol. Res. Lett., 81(6), 892-906.
- University of Genoa, (1967). *Regional Seismic Network of North Western Italy*. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/GU
- Wessel P., e W.H.F. Smith, (1991). Free software helps map and display data. Eos Trans. AGU, 72 (441), 445-446.
- Wiemer S., (2001). A software package to analyze seismicity: ZMAP. Seismol. Res. Lett., 72, 373-382.
- Wiemer S., and M. Baer, (2000). *Mapping and Removing Quarry Blast Events from Seismicity Catalogs*. Bull. Seismol. Soc. Am., 90 (2), 525-530.

ALLEGATO A

Stazioni della Rete Sismica Nazionale operative nel 2015

Sigla	Denominazione	Prov.	Regione	Lat.	Long.	н	veloc.	accel.	rete	aperte '15	chiuse '15
A300A	Muzzana del Turgnano	UD	Friuli-Venezia Giulia	45,8193	13,1279	6	Trillium-120C		Z3	28/10/15	
A301A	Isiata	VE	Veneto	45,6198	12,6210	2	Trillium-120C		Z3	29/10/15	
A302A	Resana	ΤV	Veneto	45,6335	11,9713	26	Trillium-120C		Z3	30/10/15	
A303A	Lido-Pellestrina	VE	Veneto	45,3443	12,3182	11	STS2-120s		Z3	26/10/15	
A305A	Porto Tolle	RO	Veneto	44,9592	12,4323	-3	Trillium-120C		Z3	29/10/15	
A306A	Viano	RE	Emilia Romagna	44,5359	10,5961	463	Trillium-120C		Z3	04/11/15	
A307A	Bentivoglio	во	Emilia Romagna	44,6608	11,4363	9	Trillium-120C		Z3	05/11/15	
A308A	Longastrino	FE	Emilia Romagna	44,5825	12,0057	-2	Trillium-120C		Z3	03/11/15	
A309A	Martorano	FC	Emilia Romagna	44,1704	12,2445	32	Trillium-120C		Z3	28/10/15	
A312A	Bozzolo	MN	Lombardia	45,1074	10,4817	30	Trillium-120s		Z3	30/12/15	
A313A	Volta Mantovana	MN	Lombardia	45,3135	10,6628	64	Trillium-120s		Z3	30/12/15	
A316A	Montecristo	LI	Toscana	42,3337	10,2957	38	Trillium-120C		Z3	03/11/15	
A317A	Capraia	LI	Toscana	43,0500	9,8424	35	Trillium-120C		Z3	15/12/15	
A318A	Donoratico	LI	Toscana	43,1210	10,5732	173	Trillium-120C		Z3	17/11/15	
A319A	Santa Luce	PI	Toscana	43,4764	10,5787	343	Trillium-120C		Z3	11/12/15	
ABSI	Aberst.ckl (Sarntal)	ΒZ	Trentino Alto Adige	46,7285	11,3205	1801	STS2-120s		INGV-SI		
ACER	Acerenza	ΡZ	Basilicata	40,7867	15,9427	690	Trillium-40s	Episensor	INGV		
АСОМ	Acomizza	UD	Friuli Venezia Giulia	46,5480	13,5137	1788	Trillium-40s		OGS-NI		
AG11	Viggiano	ΡZ	Basilicata	40,3324	15,9521	910	Le3D-Lite (1s)		INGV-TV		
AG51	Grumento Nova	ΡZ	Basilicata	40,2911	15,8542	770	Le3D-1s		INGV-TV		
AGOR	Agordo	BL	Veneto	46,2829	12,0472	631	STS2-120s		OGS-NI		
AGST	Augusta	SR	Sicilia	37,2565	15,2271	70	Le3D-5s		INGV		
AIO	Antillo	ME	Sicilia	37,9712	15,2330	751	Trillium-40s		MedNet		
AJAC	Ajaccio	(F)	Corsica	41,9279	8,7630	27	CMG-3ESP		FR		
ALJA	Alia	PA	Sicilia	37,7490	13,7537	700	Trillium-40s		INGV		
AMUR	Altamura	BA	Puglia	40,9071	16,6041	443	Trillium-40s		INGV		
AOI	Monte Conero	AN	Marche	43,5502	13,6020	530	Trillium-40s		INGV		
APEC	Apecchio	PU	Marche	43,5585	12,4199	488	Trillium-40s	SF3000	INGV		
APPI	Appiano	ΒZ	Trentino Alto Adige	46,4787	11,2281	1056	Le3D-5s		INGV		
AQT1	Arquata del Tronto	AP	Marche	42,7738	13,2935	770	Le3D-1s		INGV		
AQU	L'Aquila	AQ	Abruzzo	42,3539	13,4019	729	STS2-120s	Episensor	MedNet		
ARCI	Arcidosso	GR	Toscana	42,8519	11,4754	1080	Trillium-40s	Episensor	INGV		
ARPR	Arapgir (KOERI station)	(TR)	Turchia	39,0929	38,3356	1537	STS2-120s	Episensor	GEOFON		
ARRO	Arrone	TR	Umbria	42,5792	12,7657	253	Le3D-5s		INGV		
ARSA	Arzberg	(A)	Austria	47,2505	15,5232	577	STS2-120s		AO		
ARVD	Arcevia 2	AN	Marche	43,4981	12,9415	461	Trillium-40s		INGV		
ASOL	Asolo	ΤV	Veneto	45,8003	11,9023	181		Episensor	INGV		
ASQU	Asqua	AR	Toscana	43,7967	11,7893	860	Trillium-120s	Episensor	INGV		
ASSB	Assisi San Benedetto	PG	Umbria	43,0426	12,6587	734	Trillium-40s		INGV		
ATBU	Serra di Burano	PG	Umbria	43,4757	12,5483	1000	Le3D-5s		INGV		

	1	r	1				1				
ATCC	Casa Castalda	PG	Umbria	43,1851	12,6400	557	Le3D-5s		INGV		
ATFO	Monte Foce - Gubbio	PG	Umbria	43,3666	12,5715	960	Trillium-40s		INGV		
ATLO	Montelovesco	PG	Umbria	43,3152	12,4073	584	Le3D-5s	Episensor	INGV		
АТМС	Monte Cedrone	PG	Umbria	43,4469	12,1928	740	Le3D-5s		INGV		
ATMI	Monte Miggiano	PG	Umbria	43,3342	12,2680	581	Trillium-40s		INGV		
ATN	Antennamare	ME	Sicilia	38,1595	15,4647	1130	Le3D-20s		INGV		
ATPC	Poggio Castellaccio	PG	Umbria	43,4807	12,4570	810	Trillium-40s	Episensor	INGV		
ATPI	Pietralunga (Aviosuperficie)	PG	Umbria	43,4507	12,4022	694	Le3D-5s		INGV		
ATSC	Scheggia	PG	Umbria	43,4240	12,6864	895	Le3D-1s		INGV		
ATTE	Monte Tezio	PG	Umbria	43,1979	12,3536	929	Trillium-40s	Episensor	INGV		
ATVA	Monte Valcinella	PG	Umbria	43,2786	12,2853	605	Le3D-5s		INGV		
ΑΤVΟ	Monte Valentino	PG	Umbria	42,3821	12,4066	638	Trillium-40s		INGV		
BADI	Badiali	PE	Abruzzo	43,5097	12,2443	430	Le3D-5s		INGV		
BAG8	Bagolino	BS	Lombardia	45,8228	10,4664	807		Episensor	INGV		
BAT1^	Gubbio	PG	Umbria	43,3816	12,4357	643	Malin/Le3D-5s		INGV		
BAT2^	Pietralunga	PG	Umbria	43,3704	12,4094	691	Malin/Le3D-5s		INGV		
BAT3^	Pietralunga	PG	Umbria	43,4013	12,4103	580	Malin		INGV		
BDI	Bagni di Lucca	LU	Toscana	44,0624	10,5970	830	Trillium-40s	Episensor	INGV		
BERNI	Berninapass	(CH)	Svizzera	46,4134	10,0231	2310	STS2-120s		ETH		
внв	Bricherasio	то	Piemonte	44,8352	7,2633	585	Trillium-40s		INGV-IG		
BIOG	Camporeale (Ariano Irpino)	AV	Campania	41,1999	15,1326	623	Trillium-120s	Episensor	INGV		
BLLA^	Bellaria	RN	Emilia Romagna	44,1429	12,4703	1	Le3D-1s		INGV		
BLY	Banja Luka	(BiH)	Bosnia-Herzegovina	44,7488	17,1839	256	STS2-120s	Episensor	MN		
BNALP	Bannalp	(CH)	Svizzera	46,8705	8,4250	1540	STS2-120s		ETH		
BNI	Bardonecchia	то	Piemonte	45,0528	6,6763	1407	STS2-120s	Episensor	MedNet		
вов	Bobbio	PC	Emilia Romagna	44,7679	9,4478	910	Trillium-40s	Episensor	INGV		
BOJS	Bojanci	(SLO)	Slovenia	45,5043	15,2518	252	STS2-3G-120s		SL		
BORM	Bormio	SO	Lombardia	46,4694	10,3764	1235		Episensor	INGV		
BOSI	Bozen-Zivilschutz Zentrale	ΒZ	Trentino Alto Adige	46,4952	11,3185	242			INGV-SI		
вотм	Botticino Mattina	BS	Lombardia	45,5416	10,3213	157		Episensor	INGV		
BRES	Bressanone	ΒZ	Trentino Alto Adige	46,6987	11,7341	2454	Le3D-1s		INGV		
BRIS	Brisighella	RA	Emilia Romagna	44,2245	11,7666	260	Trillium-40s	Episensor	INGV		
BRMO	Bormio	SO	Lombardia	46,4760	10,3731	1380	Trillium-40s		INGV		
BRSN	Barisano	FC	Emilia Romagna	44,2842	12,0802	20	Le3D-1s	Episensor	INGV	21/10/15	
BSSO	Busso	СВ	Molise	41,5461	14,5938	1010	Trillium-40s	Episensor	INGV		
BULG	Camerota - Monte Bulgheria	SA	Campania	40,0783	15,3776	815	Trillium-40s	Episensor	INGV		
BURY	Ventimiglia - Villa Embury	IM	Liguria	43,7825	7,5569	20	Trillium-40s		INGV-IG	14/04/15	
BZS	Buzias	(RO)	Romania	45,6188	21,6401	260	CMG-3ESP		MN		
CADA	Capodarco	AP	Marche	43,1942	13,7614	148		Episensor	INGV		
CAFE	Carife	AV	Campania	41,0280	15,2366	1070	Trillium-40s	Episensor	INGV		
CAFI	Castiglion Fiorentino	AR	Toscana	43,3292	11,9663	547	Trillium-40s	Episensor	INGV		

CAFR	Castel Frentano	СН	Abruzzo	42,2273	14,3470	250	Trillium-40s	Episensor	INGV		
CAGR	Agira	EN	Sicilia	37,6220	14,4999	548	Trillium-40s		INGV		
САМР	Campotosto	AQ	Abruzzo	42,5358	13,4090	1283	Trillium-120s		INGV		
CANO	Canova	SV	Liguria	44,2075	8,2372	638	Trillium 40s		INGV-IG	01/09/15	
САРА	Cerignola	FG	Puglia	41,1583	15,8169	156	Trillium-120C		INGV		
CAPR	Capriolo	BS	Lombardia	45,6372	9,9345	215		Episensor	INGV		
CAR1	Carolei	CS	Calabria	39,2534	16,2114	680	Trillium-40s	Episensor	INGV		
CARD	Cardoso	LU	Toscana	44,0260	10,4821	380	Trillium-40s		INGV-IG		
CARE	Lago Careser	ΤN	Trentino Alto Adige	46,4252	10,6945	2605		CMG-5T	ST		
CASP	Castiglione della Pescaia	GR	Toscana	42,7908	10,8652	390	Trillium-40s	Episensor	INGV		
CAVE	Cavezzo	MD	Emilia Romagna	44,8658	11,0031	18	Trillium-120s		INGV		
CAVT	Castelvetrano 2	ΤP	Sicilia	37,6788	12,7556	158	SS1-Ranger		INGV		
CDCA^	Città Di Castello	PG	Umbria	43,4584	12,2336	50	Le3D-1s	Episensor	INGV		
CDRU	Ottati - Civita Di Ruta	SA	Campania	40,4896	15,3046	1057	Trillium-40s	Episensor	INGV		
CEL	Celeste	RC	Calabria	38,2603	15,8939	702	STS2-120s	Episensor	MedNet		
CELB	San Piero in Campo - Elba	LI	Toscana	42,7466	10,2107	742	Trillium-40s		INGV		
CELI	Celico	CS	Calabria	39,4027	16,5088	1290	Trillium-120s	Episensor	INGV		
CERA	Filignano	IS	Molise	41,5978	14,0183	800	Trillium-40s	Episensor	INGV		
CERT	Cerreto Laziale	RM	Lazio	41,9490	12,9818	773	Trillium-120s		INGV		
CESI	Cesi - Serravalle di Chienti	МС	Marche	43,0049	12,9046	840	Trillium-40s		INGV		
CESX^	Cesi	TR	Umbria	42,6100	12,5800	380	Trillium-240s		INGV		
CET2	Cetraro	CS	Calabria	39,5288	15,9546	675	Trillium-40s		INGV		
CGL	Punta Serpeddì	CA	Sardegna	39,3660	9,2960	1050	Le3D-5s		INGV		
CGRP	Cima Grappa	PN	Friuli Venezia Giulia	45,8807	11,8047	1757	STS2-120s	Episensor	OGS-NI		
CIGN	Sant'Elia a Pianisi	СВ	Molise	41,6542	14,9050	350	Trillium-40s		INGV		
CIMA	Civitanova Marche	AN	Marche	43,3053	13,6701	163		Episensor	INGV		
СІМО	Cimolais	PN	Friuli-Venezia Giulia	46,3116	12,4448	710	STS2-120s		OGS-NI	10/07/15	
CING	Cingoli	MC	Marche	43,3756	13,1954	626	Trillium-40s	Episensor	INGV		
CIRO	Champorcer	AO	Valle d'Aosta	45,6019	7,5682	2516	Trillium-40s		INGV-IG		
CLTA	Licata	AG	Sicilia	37,1580	13,9620	246	Trillium-40s		INGV		
CLTB	Caltabellotta	AG	Sicilia	37,5786	13,2156	957	STS2-120s		MedNet		
CLUD	Cludinico	UD	Friuli-Venezia Giulia	46,4569	12,8814	635	Trillium-120s		OGS-NI	10/07/15	
СМДО	Montedoro	CL	Sicilia	37,4639	13,8229	571	Trillium-120C		INGV		
СМРО	Campotto Po	FE	Emilia Romagna	44,5808	11,8056	2	Trillium-40s	Episensor	INGV		
CMPR	Campora	SA	Campania	40,3181	15,3030	732	Trillium-40s	Episensor	INGV		
CNCS	Concesio	BS	Lombardia	45,6060	10,2170	126		Episensor	INGV		
COL3	Colliano	SA	Campania	40,6871	15,3304	1026	Trillium-40s	CMG-5T	IX		
COR1	Corinaldo	AN	Marche	43,6318	13,0000	237	Le3D-1s		INGV		
CORF	Corte	(F)	Corsica	42,2980	9,1530	475	CMG-3ESP		FR		
CORL	Corleone	PA	Sicilia	37,8943	13,3038	660	Trillium-40s		INGV		
CPGN	Carpegna	PU	Marche	43,8011	12,3205	1400	Le3D-1s	Episensor	INGV		

CRAC	Сгасо	MT	Basilicata	40,3650	16,4350	384	Le3D-5s		INGV		
CRE	Caprese Michelangelo	AR	Toscana	43,6189	11,9517	1215	Trillium-40s		INGV		
CRJA	Costa Raja	TP	Sicilia	37,8016	13,0043	560	SS1-Ranger		INGV		
CRM1	Castelraimondo	MC	Marche	43,2101	13,0580	302		SF3000	INGV		
CRMI	Carmignano	PO	Toscana	43,7900	10,9700	490	Trillium-40s	Episensor	INGV		
CRND	Cornuda	ΤV	Veneto	45,8361	12,0131	159		Episensor	INGV		
CSLB	Castelbuono	PA	Sicilia	37,9375	14,0579	583	Trillium-120s		INGV	27/03/15	
CSNT	Castellina in Chianti	SI	Toscana	43,4731	11,2902	636	Trillium-40s		INGV		
CSP1	Cessapalombo	MC	Marche	43,0918	13,2048	1188	Le3D-1s		INGV		
СТІ	Castello Tesino	ΤN	Trentino Alto Adige	46,0482	11,6497	1180	Trillium-120s		INGV		
CTL8^	Castelleone	CR	Lombardia	45,2763	9,7622	60	Malin	Episensor	INGV		
CUC	Castrocucco	CS	Calabria	39,9938	15,8155	637	STS2-120s		MedNet		
DAVOX	Davos	(CH)	Svizzera	46,7806	9,8797	1830	STS2-120s		ETH		
DGI	Dorgali Grotta Ispinigoli	NU	Sardegna	40,3180	9,6067	354	Trillium-40s		INGV		
DIVS	Divcibare	(RS)	Serbia	44,0981	19,9917	1000	STS1-VBB		MN		
DIX	Grand Dixence	(CH)	Svizzera	46,0805	7,4040	2400	STS2-120s		ETH		
DOI	San Damiano Macra	CN	Piemonte	44,5042	7,2467	1039	Trillium-40s		INGV		10/09/15
DOSS	Fondo Grande - Serrada	ΤN	Trentino Alto Adige	45,8808	11,1884	1660	Trillium-40s	Episensor	ST		
ECNV	Catenanuova	СТ	Sicilia	37,5956	14,7125	484	Trillium-40s		INGV-CT		
ECTS	Castiglione di Sicilia	СТ	Sicilia	37,8820	15,1210	681	Le3D-1s		INGV		
EL6	Elcito	MC	Marche	43,3293	13,1017	978	Le3D-1s		INGV		
EMSG	Parco Etna (Il Castello)	СТ	Sicilia	37,8208	14,9468	1435	Trillium-40s		INGV-CT		
ENIC	Nicolosi	СТ	Sicilia	37,6314	15,0216	877	Trillium-40s		INGV-CT		
ENR	Entracque	CN	Piemonte	44,2267	7,4203	1040	Trillium-40s		INGV-IG		
EPOZ	Pozzillo	СТ	Sicilia	37,6719	15,1885	124	Trillium-40s		INGV-CT		
EPZF	Pizzo Felice	СТ	Sicilia	37,8240	14,8570	1140	Trillium-40s		INGV-CT		
EQUI	Equi Terme	MS	Toscana	44,1660	10,1530	350	CMG40T-60s		INGV-IG		
ERBM	Eremo di Bismantova	RE	Emilia Romagna	44,4195	10,4127	933	Le3D-5s		INGV		
ERC	Erice	ТР	Sicilia	38,0376	12,5873	776	Le3D-1s		INGV	29/04/15	
ESLN	Serra La Nave	СТ	Sicilia	37,6934	14,9744	1787	Trillium-40s		INGV		
ESML	Santa Maria di Licodia	СТ	Sicilia	37,6181	14,8794	417	Trillium-40s		INGV-CT		
EUCT	Pavia	PV	Lombardia	45,2026	9,1349	82		Episensor	INGV		
FAEN	Faenza	RA	Emilia Romagna	44,2895	11,8770	41		Episensor	INGV		
FAGN	Fagnano	AQ	Abruzzo	42,2657	13,5838	761	Trillium-40s		INGV		
FAVR	Favara 2	AG	Sicilia	37,2671	13,6669	258	Trillium-40s		INGV		
FDMO	Fiordimonte	МС	Marche	43,0365	13,0873	550	Trillium-240s		INGV		
FEMA	Monte Fema	MC	Marche	42,9621	13,0498	1370		Episensor	INGV		
FERB^	Ferrara (Casaglia)	FE	Emilia Romagna	44,9000	11,5400	6	CMG-3TB-360s	CMG-5TB	OGS-NI		
FERS	Ferrara (Casaglia)	FE	Emilia Romagna	44,9035	11,5406	3		Episensor	INGV		
FIAM	Fiamignano	RI	Lazio	42,2680	13,1172	1070	Trillium-120s	Episensor	INGV		
FINB	Finale Ligure	SV	Liguria	44,1775	8,3253	85	Trillium-40s		INGV		

FIR	Firenze	FI	Toscana	43,7744	11,2551	40	Trillium-240s	Episensor	INGV		
FIU	Minerbio - Fondo Fiumicello	во	Emilia Romagna	44,6403	11,4917	12	Le3D-5s		INGV		
FIU1	Fiuminata	MC	Marche	43,1886	12,9316	479		SF3000	INGV		
FIVI^	Fivizzano	MS	Toscana	44,2393	10,1273	380		Episensor	INGV-IG		
FNVD	Fontana Vidola	во	Emilia Romagna	44,1678	11,1229	950	Trillium-40s	Episensor	INGV		
FOSV	Fossato di Vico	PG	Umbria	43,2948	12,7612	559	Le3D-5s		INGV		
FRE8	Fregona	ΤV	Veneto	46,0150	12,3552	543		Episensor	INGV		
FRES	Fresagrandinaria	СН	Abruzzo	41,9735	14,6693	414	Trillium-40s		INGV		
FRON	Frontone	PU	Marche	43,5178	12,7257	515	Le3D-5s		INGV		
FROS	Frosini	SI	Toscana	43,2097	11,1562	432	Trillium-40s		INGV		
FSSB	Fossombrone	PS	Marche	43,6931	12,7771	523	Trillium-40s		INGV		
FUORN	Ofenpass	(CH)	Svizzera	46,6202	10,2635	2335	STS2-120s		ETH		
FUSIO	Fusio	(CH)	Svizzera	46,4549	8,6631	1480	STS2-120s		ETH		
FVI	Forni Avoltri	UD	Friuli Venezia Giulia	46,5966	12,7804	1024	CMG40T-30s		INGV		
GAG1	Gagliole	MC	Marche	43,2381	13,0674	484		SF3000	INGV		
GAGG	Gaggia	ΤN	Trentino Alto Adige	46,0835	10,9587	1617		Episensor	ST		
GALF	Gagliano Castelferrato	EN	Sicilia	37,7107	14,5665	740	Trillium-40s		INGV		
GATE	Gambatesa	СВ	Molise	41,5131	14,9102	487	Trillium-40s	Episensor	INGV		
GBOS	Grotte Bossea	CN	Piemonte	44,2416	7,8399	897	Trillium-240s		INGV-IG		
GEPF	Gemona - Piazza del Ferro	UD	Friuli Venezia Giulia	46,2750	13,1386	12	CMG40T-30s		INGV-RF		
GIB	Gibilmanna	PA	Sicilia	37,9903	14,0262	1005	Trillium-120s		INGV		
GIGS	Gran Sasso - Laboratorio Nazionale	AQ	Abruzzo	42,4532	13,5728	960	Trillium-240s		INGV	16/02/15	
GIMEL	St Georges-Gimel	(CH)	Svizzera	46,5347	6,2658	1130	STS2-120s		ETH		
GIUL	Giuliano Di Roma	FR	Lazio	41,5583	13,2546	566	Trillium-40s		INGV		
GMB	Gambarie	RC	Calabria	38,1681	15,8289	1300	Le3D-20s		INGV		
GORR	Gorreto	GE	Liguria	44,6071	9,2926	609	Trillium-40s		INGV-IG		
GRAM	Graiana	PR	Emilia Romagna	44,4913	10,0658	850	CMG40T-60s		INGV-IG		
GRI	Girifalco	CZ	Calabria	38,8221	16,4200	510	L4-C-3D		INGV		
GROG	Isola di Gorgona	LI	Toscana	43,4262	9,8920	118	Trillium-40s	Episensor	INGV		
GUAR	Guarcino	FD	Lazio	11 70/5	12 21 22	7/1	T.:!!!:		INGV		
GUMA			20210	41,7945	13,3123	741	Trillium-40s				
	Gualdo di Macerata	MC	Marche	43,0627	13,3125	574	Trillium-40s		INGV		
HAGA	Gualdo di Macerata Brucoli	мс ст	Marche Sicilia	43,0627 37,2850	13,3352 15,1550	574 126	Trillium-40s Trillium-120s Trillium-40s		INGV INGV-CT		
HAGA HAVL	Gualdo di Macerata Brucoli Avola	MC CT SR	Marche Sicilia Sicilia	43,0627 37,2850 36,9596	13,3352 13,3352 15,1550 15,1220	574 126 502	Trillium-40s Trillium-120s Trillium-40s Trillium-40s		INGV INGV-CT INGV		
HAGA HAVL HBSP	Gualdo di Macerata Brucoli Avola Bosco San Pietro	MC CT SR CT	Marche Sicilia Sicilia Sicilia	43,0627 37,2850 36,9596 37,1270	13,3123 13,3352 15,1550 15,1220 14,4920	574 126 502 255	Trillium-40s Trillium-120s Trillium-40s Trillium-40s Trillium-40s		INGV INGV-CT INGV-CT INGV-CT		
HAGA HAVL HBSP HCRL	Gualdo di Macerata Brucoli Avola Bosco San Pietro Carlentini	MC CT SR CT SR	Marche Sicilia Sicilia Sicilia Sicilia	43,0627 37,2850 36,9596 37,1270 37,2831	13,3123 13,3352 15,1550 15,1220 14,4920 15,0325	741 574 126 502 255 240	Trillium-40s Trillium-120s Trillium-40s Trillium-40s Trillium-40s Trillium-40s		INGV INGV-CT INGV-CT INGV-CT INGV		
HAGA HAVL HBSP HCRL HLNI	Gualdo di Macerata Brucoli Avola Bosco San Pietro Carlentini Lentini - Masseria Cucco	MC CT SR CT SR SR	Marche Sicilia Sicilia Sicilia Sicilia	43,0627 37,2850 36,9596 37,1270 37,2831 37,3485	13,3123 13,3352 15,1550 15,1220 14,4920 15,0325 14,8720	741 574 126 502 255 240 146	Trillium-40s Trillium-120s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s		INGV INGV-CT INGV-CT INGV INGV		
HAGA HAVL HBSP HCRL HLNI HMDC	Gualdo di Macerata Brucoli Avola Bosco San Pietro Carlentini Lentini - Masseria Cucco Modica	MC CT SR CT SR SR RG	Marche Sicilia Sicilia Sicilia Sicilia Sicilia Sicilia	43,0627 37,2850 36,9596 37,1270 37,2831 37,3485 36,9590	13,3352 13,3352 15,1550 15,1220 14,4920 15,0325 14,8720 14,7831	741 574 126 502 255 240 146 595	Trillium-40s Trillium-120s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s		INGV-CT INGV-CT INGV-CT INGV INGV INGV		
HAGA HAVL HBSP HCRL HLNI HMDC HPAC	Gualdo di Macerata Brucoli Avola Bosco San Pietro Carlentini Lentini - Masseria Cucco Modica Pachino	MC CT SR CT SR SR RG SR	Marche Sicilia Sicilia Sicilia Sicilia Sicilia Sicilia	43,0627 37,2850 36,9596 37,1270 37,2831 37,3485 36,9590 36,7085	13,3123 13,3352 15,1550 15,1220 14,4920 15,0325 14,8720 14,7831 15,0372	741 574 126 502 255 240 146 595 70	Trillium-40s Trillium-120s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s		INGV INGV-CT INGV-CT INGV INGV INGV INGV-CT		
HAGA HAVL HBSP HCRL HLNI HMDC HPAC HVZN	Gualdo di Macerata Brucoli Avola Bosco San Pietro Carlentini Lentini - Masseria Cucco Modica Pachino	MC CT SR CT SR SR RG SR CT	Marche Sicilia Sicilia Sicilia Sicilia Sicilia Sicilia Sicilia	43,0627 37,2850 36,9596 37,1270 37,2831 37,3485 36,9590 36,7085 37,1783	13,3123 13,3352 15,1550 15,1220 14,4920 15,0325 14,8720 14,7831 15,0372 14,7155	741 574 126 502 255 240 146 595 70 787	Trillium-40s Trillium-120s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s		INGV INGV-CT INGV-CT INGV INGV INGV INGV-CT INGV-CT		
HAGA HAVL HBSP HCRL HLNI HMDC HPAC HVZN IACL	Gualdo di Macerata Brucoli Avola Bosco San Pietro Carlentini Lentini - Masseria Cucco Modica Pachino Vizzini Alicudi	MC CT SR CT SR SR RG SR CT RC	Marche Sicilia Sicilia Sicilia Sicilia Sicilia Sicilia Sicilia Sicilia Calabria	43,0627 37,2850 36,9596 37,1270 37,2831 37,3485 36,9590 36,7085 37,1783 38,5330	13,3123 13,3352 15,1550 15,1220 14,4920 15,0325 14,8720 14,7831 15,0372 14,7155 14,3550	741 574 126 502 255 240 146 595 70 787 145	Trillium-40s Trillium-120s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s Trillium-40s		INGV-CT INGV-CT INGV-CT INGV INGV INGV-CT INGV-CT		

IFIL	Filicudi	ME	Sicilia	38,5642	14,5753	277	Trillium-40s		INGV		
ILLI	Lipari	ME	Sicilia	38,4457	14,9483	283	Trillium-40s		INGV		
IMI	Imperia	IM	Liguria	43,9105	7,8932	840	Trillium-40s		INGV		
IMOL	Imola	во	Emilia Romagna	44,3596	11,7425	27	Le3D-1s	Episensor	INGV		
INTR	Introdacqua	AQ	Abruzzo	42,0115	13,9046	924	Trillium-40s	Episensor	INGV		
IST3	Stromboli (Oss. Fiorentini)	ME	Sicilia	38,7992	15,2304	255	Trillium-40s		INGV-CT		
ISTR	Ginostra	ME	Sicilia	38,7866	15,1918	103	Trillium-40s		INGV		
ITM	Ithomi, Messinia	(GR)	Grecia	37,1787	21,9252	423	STS2-3G-120s		HL		
IVPL	Vulcano Piano	ME	Sicilia	38,3763	14,9801	486	Trillium-40s		INGV		
JOPP	Joppolo	VV	Calabria	38,6068	15,8856	500	Trillium-40s	Episensor	INGV		
KEK	Kerkira	(GR)	Grecia	39,7130	19,7987	280	STS2-120s		HL-NOA		
KLV	Kalavryta Achaia	(GR)	Grecia	38,0437	22,1504	758	STS2-120s		HL		
KOGS	Код	(SLO)	Slovenia	46,4481	16,2503	396	CMG40T-30s		SL		
KOSI	Kohlern-Titschen	ΒZ	Trentino Alto Adige	46,4630	11,3778	1604	STS2-120s		INGV-SI		
LADO	San Nicola dell'Alto	KR	Calabria	39,2840	16,9795	488	Le3D-5s		INGV-CL		
LATB^	Latina	LT	Lazio	41,4939	12,9624	0	Malin		INGV		
LATE	Latera	VT	Lazio	42,6137	11,8040	610	Trillium-40s	Episensor	INGV		
LAV9	Lanuvio	RM	Lazio	41,6778	12,6989	300	Trillium-40s	Episensor	INGV		
LEOD	Capriano del Colle	BS	Lombardia	45,4582	10,1234	92		Episensor	INGV		
LIK	San Giovanni in Carico	FR	Lazio	41,4996	13,5594	312	Le3D-1s		INGV	28/05/15	
LI03	Lioni	AV	Campania	40,8969	15,1804	737	Trillium-40s	CMG-5T	IX		
LISA	Isola di Linosa	AG	Sicilia	35,8716	12,8634	63	Trillium 40s		INGV		
LJU	Ljubljana	(SLO)	Slovenia	46,0438	14,5278	396	CMG40T-30s		SL		
LMD	Lutirano	FI	Toscana	44,0775	11,7073	450	Trillium-240s		INGV		
LNSS	Leonessa	RI	Lazio	42,6029	13,0403	1155	Trillium-40s		INGV		
LPDG	Lampedusa (Capo Grecale)	AG	Sicilia	35,5183	12,6302	50	Trillium-40s		INGV		
LPEL	Lama dei Peligni	СН	Abruzzo	42,0468	14,1832	760	Trillium-40s		INGV		
LSD	Lago Serrù - Ceresole Reale	то	Piemonte	45,4595	7,1343	2285	Trillium-40s	Episensor	INGV-IG		
LTRZ	Laterza	TA	Puglia	40,6033	16,8191	381	Le3D-5s		INGV		
LUSI	Drena	ΤN	Trentino Alto Adige	45,9595	10,9436	860	STS2-120s		INGV-SI		
MA9	Marino	RM	Lazio	41,7702	12,6593	340	Trillium-240s		INGV		
MABI	Malga Bissina	ΤN	Trentino Alto Adige	46,0549	10,5140	1853	Trillium-40s		INGV		
MAGA	Magasa	BS	Lombardia	45,7753	10,6286	1265	Trillium-40s		INGV		
MAIM	Mastiano	LU	Toscana	43,9142	10,4915	200	Trillium-40s		INGV-IG		
MAON	Monte Argentario	GR	Toscana	42,4283	11,1309	237	Trillium-40s	Episensor	INGV		
MATE	Matera	MT	Basilicata	40,6491	16,7044	494	STS2-120s		GEOFON		
MCEL	Tramutola - Monticello	ΡZ	Basilicata	40,3249	15,8019	960	Trillium-40s	Episensor	INGV		
MCIV	Monte Civitella	GR	Toscana	42,7786	11,6765	790	Trillium-40s		INGV		
MCPD	Capo Orlando	ME	Sicilia	38,1199	14,7310	199	Trillium-40s		INGV-CT		
MCRV	Calabritto - Monte Cer- vialto	AV	Campania	40,7826	15,1684	1191	Trillium-40s	Episensor	INGV		
MCSR	Castroreale	ME	Sicilia	38,0646	15,2301	1064	Trillium-40s		INGV		

мст	Montecammarata	AG	Sicilia	37,6186	13,6076	1558	Le3D-20s		INGV		
MDAR	Monte Daria	МС	Marche	43,1927	13,1427	940		Episensor	INGV		
MDI	Monte di Nese	BG	Lombardia	45,7697	9,7160	954	Trillium-40s	Episensor	INGV		
MELA	Melanico - S. Croce di Magliano	СВ	Molise	41,7059	15,1270	115	Trillium-40s	Episensor	INGV		
MERA	Merate	LC	Lombardia	45,7054	9,4291	338		Episensor	INGV		
MESG	Mesagne	BR	Puglia	42,5894	17,8504	78	Trillium-40s		INGV		
MEU	Monte Lauro	SR	Sicilia	37,1111	14,8300	986	L4-C-3D		INGV		
MFNL	Monte Finestrelle	TP	Sicilia	37,7908	12,9224	677	SS1-Ranger		INGV		
MGAB	Montegabbione	TR	Umbria	42,9126	12,1121	547	Trillium-40s	Episensor	INGV		
MGR	Morigerati	SA	Campania	40,1376	15,5535	288	Trillium-40s	Episensor	INGV		
MGRO	Montegrosso (Pianlatte)	IM	Liguria	44,0426	7,8082	1690	Trillium-40s		INGV-IG		
MIDA	Miranda	IS	Molise	41,6419	14,2540	950	Trillium-40s	Episensor	INGV		
MIGL	Miglionico	MT	Basilicata	40,6044	16,4410	440	Trillium-40s	Episensor	INGV		
MILN	Milano	MI	Lombardia	45,4803	9,2321	125		Episensor	INGV		
MILZ	Milazzo Faro	ME	Sicilia	38,2713	15,2313	0	Trillium-40s		INGV		
MMGO	Monte Magaggiaro	AG	Sicilia	37,6620	12,9767	397	SS1-Ranger		INGV		
ммк	Mattmark	(CH)	Svizzera	46,0517	7,9650	2200	STS2-120s		ETH		
MMN	Mormanno	CS	Calabria	39,8910	15,9904	921	Trillium-40s		INGV		
MMUR	Monte Murano	AN	Marche	43,4418	12,9973	800		Episensor	INGV		
мно	Monte Soro	ME	Sicilia	37,9310	14,6950	1830	Le3D-5s		INGV		
мптр	Montappone	FM	Marche	43,1374	13,4693	325		Episensor	INGV		
ΜΝΤΥ	Mantova	MN	Lombardia	45,1495	10,7897	36		Episensor	INGV		
мосо	Biccari - Mt. Cornacchia	FG	Puglia	41,3700	15,1580	1049	Trillium-40s	Episensor	INGV		
MODE	Modena - Università	МО	Emilia Romagna	44,6297	10,9492	41		Episensor	INGV		
MODR	Mondragone	CE	Campania	41,1459	13,8779	345	Trillium-40s	Episensor	INGV		
мома	Monte Martano	PU	Marche	42,8010	12,5682	1040	Trillium-40s	Episensor	INGV		
MONC	Moncucco Torinese	AT	Piemonte	45,0739	7,9271	480	Trillium-40s	Episensor	INGV		
MOSI	Gro.montoni-Vinschgau	ΒZ	Trentino Alto Adige	46,6164	10,5495	1957	STS2-120s		INGV-SI		
MPAG	Monte Paganuccio	PU	Marche	43,6292	12,7595	930	Le3D-5s	Episensor	INGV		
MPAZ	Palizzi	RC	Calabria	37,9531	16,0067	496	Trillium-40s		INGV		
MPG	Monte Pellegrino	PA	Sicilia	38,1617	13,3600	600	Le3D-5s		INGV		
MPNC	San Pier Niceto	ME	Sicilia	38,1465	15,3528	479	Trillium-40s		INGV		
МРРТ	Montemurlo	РО	Toscana	43,9575	11,0903	752	Le3D-5s		INGV	04/06/15	
MPRI	Monteprat	UD	Friuli-Venezia Giulia	46,2408	12,9877	762	Trillium-120s		OGS-NI	10/07/15	
MRB1	Apice - Monte Rocchetta	BN	Campania	41,1227	14,9682	688	Trillium-40s	Episensor	INGV		
MRGE	Morge	AO	Valle d'Aosta	45,7698	7,0610	1660	Trillium-40s	Episensor	INGV		
MRLC	Muro Lucano	ΡZ	Basilicata	40,7564	15,4889	605	Trillium-40s	Episensor	INGV		
MRVN	Minervino Murge	BA	Puglia	41,0609	16,1958	610	Trillium-40s	Episensor	INGV		
MSAG	Monte Sant'Angelo	FG	Puglia	41,7120	15,9096	890	Trillium-40s	Episensor	INGV		
MSC	Monte Massico	CE	Campania	41,1915	13,9713	109	S-13		INGV-OV		
MSCL	Scilla	RC	Calabria	38,2320	15,7900	893	Le3D-20s		INGV-CT		

MSFR	San Fratello	ME	Sicilia	38,0339	14,5916	723	Trillium-40s		INGV-CT		
MSRU	Poggio Scudearu	ME	Sicilia	38,2639	15,5083	408	Trillium-40s		INGV		
MSSA	Maissana	SP	Liguria	44,3163	9,5174	930	Trillium-240s		INGV-IG		
MTCE	Montecelio	RM	Lazio	42,0228	12,7422	388	Trillium-40s		INGV		
MTCR	Monachino	PT	Toscana	44,0280	11,0024	1290	Le3D-1s		INGV		
MTGR	Montagna Grande	TP	Sicilia	37,8934	12,7593	751	SS1-Ranger		INGV		
MTL1	Matelica	МС	Marche	43,2567	13,0096	353		SF3000	INGV		
MTRZ	Monterenzio	во	Emilia Romagna	44,3128	11,4248	570	Trillium-40s	Episensor	INGV		
MTSN	Montesano sulla Marcellana	SA	Campania	40,2663	15,7515	1056	Trillium-40s	Episensor	INGV		
MTTG	Motta San Giovanni	RC	Calabria	38,0031	15,6999	484	Trillium-40s		INGV		
MUCR	Ucria	ME	Sicilia	38,0430	14,8739	1042	Trillium-40s		INGV		
MUGIO	Muggio	(CH)	Svizzera	45,9219	9,0417	830	STS2-120s		ETH		
MURB	Monte Urbino	PG	Umbria	43,2630	12,5246	845	Trillium-40s	Episensor	INGV		
NARO	Abbazia di Naro	PU	Marche	43,6108	12,5806	272	Trillium-40s		INGV		
NDIM	Novi di Modena	МО	Emilia Romagna	44,8873	10,8987	19		Episensor	INGV		
NEVI	Neviano degli Arduini	PR	Emilia Romagna	44,5834	10,3163	480		Episensor	INGV		
NL9	Nola	NA	Campania	40,9205	14,5450	75	S-13		INGV-OV		
NOCI	Noci	BA	Puglia	40,7888	17,0644	420	Trillium-40s	Episensor	INGV		
NOV	Novara di Sicilia	ME	Sicilia	38,0286	15,1356	835	Trillium-40s		INGV		
NOVE	Novellara	RE	Emilia Romagna	44,7982	10,7161	16	Le3D-5s		INGV		15/05/15
NRCA	Norcia	PG	Umbria	42,8336	13,1143	927	Trillium-40s	Episensor	INGV		
0C9	Casamicciola	NA	Campania	40,7458	13,9008	123	S-13		INGV-OV		
OFFI	Offida	AP	Marche	42,9350	13,6857	320	Trillium-40s		INGV		
OPPE	Oppeano	VR	Veneto	45,3082	11,1724	20		Episensor	INGV		
ORI	Oriolo Calabro	CS	Calabria	40,0510	16,4504	375	Trillium-40s		INGV		
ORIF	Oris en Rattier	(F)	Francia	44,9183	5,8800	1080	STS2-120s		RD		
ORZI	Orzinuovi	BS	Lombardia	45,4056	9,9307	83		Episensor	INGV		
ossc	Oss. Polifunz. del Chianti (OPC)	FI	Toscana	43,5236	11,2458	452	Trillium-120s	Episensor	INGV		
ονο	Osservatorio Vesuviano	NA	Campania	40,8275	14,3967	584	Trillium-240s		INGV-OV		
OZOL	Ozolo	ΤN	Trentino Alto Adige	46,4040	11,0518	1219		CMG-5T	ST	10/06/15	
PALA	Cima Pala	PN	Friuli Venezia Giulia	46,2450	12,9240	1280	STS2-120s		OGS-NI		
PALZ	Palazzo San Gervasio	ΡZ	Basilicata	40,9441	15,9602	450	Trillium-40s	Episensor	INGV		
PANI	Panarotta	ΤN	Trentino Alto Adige	46,0501	11,3341	1983		CMG-5T	INGV-ST	15/12/15	
PAOL	Paolisi	BN	Campania	41,0312	14,5675	715	Trillium-120s	Episensor	INGV		
PARC	Parchiule - Borgo Pace	PU	Marche	43,6486	12,2386	580	Trillium-40s		INGV		
РСР	Pian Castagno - Ponzone	AL	Piemonte	44,5413	8,5452	770	Trillium-40s		INGV-IG		
PCRO	Pietralacroce	AN	Marche	43,6077	13,5323	165		Episensor	INGV		
PDG	Podgorica	(MNE)	Montenegro	42,4297	19,2608	40	STS2-120s	Episensor	MN		
PE3	Peglio	PU	Marche	43,6960	12,4963	530	S-13 (terna)		INGV		
PESA	Pesaro	PS	Marche	43,9411	12,8402	221	Trillium-40s		INGV		
DETDA	Potralia Sonrana	PA	Sicilia	37.8335	14.1148	1547	Trillium-40s		INGV		

PGF	Poggiola	(F)	Corsica	42,5483	8,9994	1130	STS2-120s		RD		
PGN3	Pignola	ΡZ	Basilicata	40,5722	15,7967	882	Trillium-40s	CMG-5T	IX		
PIEI	Pieia	PS	Marche	43,5357	12,5350	665	Trillium-40s		INGV		
PIGN	Pignataro Maggiore	CE	Campania	41,2000	14,1799	398	Trillium-120s	Episensor	INGV		
PII	Pisa Certosa	PI	Toscana	43,7219	10,5250	66	Trillium-120s		INGV		
PIO1	Pioraco	MC	Marche	43,1782	12,9838	460		SF3000	INGV		
PIPA	Pietrapaola	CS	Calabria	39,4851	16,8158	479	Trillium-120s	Episensor	INGV		
PLAC	Placanica	RC	Calabria	38,4494	16,4383	602	Trillium-40s	Episensor	INGV		
PLLN	Pollina	PA	Sicilia	37,9926	14,1431	787	Le3D-5s		INGV		
PLMA	Palmaria - Porto Venere	SP	Liguria	44,0498	9,8537	22	Trillium-240s		INGV		
PLONS	Plons	(CH)	Svizzera	47,0492	9,3807	1068	STS2-120s		ETH		
POFI	Posta Fibreno	FR	Lazio	41,7174	13,7120	878	Trillium-40s	Episensor	INGV		
POLC	Polcenigo	PN	Friuli Venezia Giulia	46,0266	12,5005	150	CMG40T-30s		OGS-NI		
РОРМ	Popiglio	PT	Toscana	44,0045	10,7570	440	CMG40T-60s		INGV-IG		
PP3	Marolino	MC	Marche	43,3778	13,6095	21	Le3D-5s	Episensor	INGV		
PRMA	Parma Università	PR	Emilia Romagna	44,7637	10,3131	78	Trillium-120s		INGV		
PSB1	Pesco Sannita	BN	Campania	41,2235	14,8108	551	Trillium-40s	Episensor	INGV		
РТСС	Patocco	UD	Friuli Venezia Giulia	46,4075	13,3540	700	Trillium-40s		INGV		
PTF	Montebello (Guzzano)	PO	Toscana	43,9603	11,0693	533	S-13 (terna)		INGV		30/06/15
PTMD	Pantelleria - Kuddia Mida	TP	Sicilia	36,7885	11,9934	626	Trillium-40s		INGV		
PTQR	Pietraquaria	AQ	Abruzzo	42,0219	13,4005	957	Trillium-120s		INGV		
PTRJ	Pietraroja	BN	Campania	41,3641	14,5290	1027	Trillium-240s	Episensor	INGV		
PTRP	Pietrapertosa	ΡZ	Basilicata	40,5215	16,0612	1077	Le3D-5s		INGV		
PUK	Puke	(AL)	Albania	42,0426	19,8926	900	Trillium-40s		AC		
PZUN	Potenza Università	ΡZ	Basilicata	40,6458	15,8070	820	STS2-120s	Episensor	MEdNet-BA		
PZZ	Prazzo-Stroppo	CN	Piemonte	44,5068	7,1160	1430	Trillium-40s		INGV-IG		
QLNO	Quiliano	SV	Liguria	44,3243	8,3459	547	Trillium-40s		INGV		
RAFF	Raffo Rosso	СТ	Sicilia	37,2225	14,3624	310	Trillium-40s		INGV		
RAVA	Ravarino	MO	Emilia Romagna	44,7559	11,1188	15	Le3D-5s		INGV		
RCAV	Rocca di Cave	RM	Lazio	41,8473	12,9453	940	Le3D-1s		INGV		
RDP	Rocca Di Papa	RM	Lazio	41,7583	12,7167	760	Trillium-40s		INGV		
RDM3	Ruvo del Monte	ΡZ	Basilicata	40,8755	15,5361	784	Trillium-40s	CMG-5T	IX		
REMY	Saint Rhemy en Bosses	AO	Valle d'Aosta	45,8378	7,1565	2448	Trillium-40s		INGV		
RESU	Resuttano	CL	Sicilia	37,6468	14,0568	785	Trillium-40s		INGV		
RISI	Rein in Taufers-Ahrntal	ΒZ	Trentino Alto Adige	46,9480	12,0787	1785	STS2-120s		INGV-SI		
RM33	Pellescritta - Montereale	AQ	Abruzzo	42,5090	13,2145	1097	Le3D-5s	Episensor	INGV		
RMP	Roma Monte Porzio	RM	Lazio	41,8111	12,7022	380	Trillium-120s		INGV		
RNCA	Ronca	GE	Liguria	44,4712	8,9512	235	CMG40T-60s		INGV-IG	01/09/15	
RNI2	Rionero Sannitico	IS	Molise	41,7033	14,1524	950	Trillium-40s	Episensor	INGV		
ROM9	ROMA (Sede INGV)	RM	Lazio	41,8284	12,5155	110	Trillium-120s	Episensor	INGV		
RONC	Roncone	ΤN	Trentino Alto Adige	45,9802	10,6228	1913		CMG-5T	ST		

RORO	Rocca Rossa	SV	Liguria	44,1122	8,0662	260	CMG3T-100s		INGV-IG		
ROSI	Ro.kopf - Sterzing	ΒZ	Trentino Alto Adige	46,9281	11,4118	1917	STS2-120s		INGV-SI		
ROTM	Rocchetta Tanaro	AT	Piemonte	44,8493	8,3527	221	Trillium-40s		INGV-IG		
ROVR	Roverè Veronese	VR	Veneto	45,6468	11,0721	1316	Trillium-120s	Episensor	INGV		
RRL	Cesana Torinese	то	Piemonte	44,9208	6,7908	2130	Trillium-40s		INGV-IG		
RSM2	Repubblica di San Marino	(RSM)	Rep. San Marino	43,9377	12,4451	645	Trillium-120s		INGV		
RSP	Reno Superiore	то	Piemonte	45,1482	7,2653	1285	Trillium-40s	Episensor	INGV-IG		
RUFI	Rufina	FI	Toscana	43,8380	11,5095	243	Le3D-1s		INGV		
SABO	Monte Sabotino	GO	Friuli Venezia Giulia	45,9875	13,6336	621	STS2-120s		OGS-NI		
SACR	S. Croce del Sannio	BN	Campania	41,3974	14,7057	859	Trillium-40s	Episensor	INGV		
SACS	S. Casciano dei Bagni	SI	Toscana	42,8491	11,9097	845	Trillium-120s	Episensor	INGV		
SALB	San Lorenzo Bellizzi	CS	Calabria	39,8772	16,3460	1188	Trillium-40s	Episensor	INGV		
SALO	Salò	BS	Lombardia	45,6183	10,5243	600	Trillium-120s	Episensor	INGV		
SAMA	S.Maria delle Mole (Ciampino)	RM	Lazio	41,7805	12,5923	119	Trillium-40s		INGV		
SANR	Sandrigo	VI	Veneto	45,6400	11,6099	51		Episensor	INGV		
SAOF	Saorge	(F)	Francia	43,9860	7,5530	595	STS2-120s		FR		
SARM	San Romano in Garfagnana	LU	Toscana	44,1840	10,4007	1070	Trillium-40s		INGV-IG		
SARZ	Sarezzano	AL	Piemonte	44,8673	8,9136	266	Trillium-40s	Episensor	INGV	11/12/15	
SATI	Passo Salati	AO	Valle d'Aosta	45,8753	7,8685	3005	Trillium-40s		INGV-IG		
SBPO	S. Benedetto Po	MN	Lombardia	45,0511	10,9199	10	Trillium-40s	Episensor	INGV		
SCHR	S. Chirico Raparo	ΡZ	Basilicata	40,1992	16,0759	968	Le3D-5s		INGV		
SCTE	Santa Cesarea Terme	LE	Puglia	40,0724	18,4675	150	Trillium-120s	Episensor	INGV		
SEF1	Sefro	MC	Marche	43,1468	12,9476	518		SF3000	INGV		
SEI	Sant'Agata	FI	Toscana	44,0543	11,3586	610	Trillium-40s		INGV		
SENI^	Senigallia	AN	Marche	43,7052	13,2331	10	Le3D-1s	Episensor	INGV		
SERM	Semide	MN	Lombardia	45,0099	11,2958	7	Le3D-1s	Episensor	INGV		
SERS	Sersale	CZ	Calabria	39,0359	16,6886	1221	Trillium-40s	Episensor	INGV		
SFI	Santa Sofia	FO	Puglia	43,9048	11,8470	548	Le3D-5s	Episensor	INGV		
SGG	S.Gregorio Matese	CE	Campania	41,3867	14,3792	880	Trillium-40s	Episensor	INGV-OV		
SGRT	San Giovanni Rotondo	FG	Puglia	41,7546	15,7437	960	Trillium-40s	Episensor	INGV		
SGTA	Sant'Agata di Puglia	FG	Puglia	41,1350	15,3650	890	Trillium-40s	Episensor	INGV		
SIRI	Monte Sirino - Moliterno	ΡZ	Basilicata	40,1821	15,8675	1063	Trillium-40s	Episensor	INGV		
SLCN	Sala Consilina	SA	Campania	40,3900	15,6328	986	Trillium-40s	Episensor	INGV		
SMA1	San Martino	RI	Lazio	42,6305	13,3353	1150	Le3D-5s		INGV		
SMPL	Sampolo dam	(F)	Corsica	42,0940	9,2850	405	STS2-3G-120s		FR		
SN1#	Capo Mulini Mare	СТ	Sicilia	37,5476	15,3975	-2065	CMG1T-OBS-360s		INGV-CT		
SNAL	S. Angelo dei Lombardi	AV	Campania	40,9254	15,2091	874	Trillium-40s	Episensor	INGV		
SNTG	Esanatoglia	MC	Marche	43,2550	12,9406	650	Trillium-120s	Episensor	INGV		
SOI	Samo	RC	Calabria	38,0732	16,0542	305	Le3D-5s		INGV		
SOLUN	Solunto	PA	Sicilia	38,0919	13,5326	190	Trillium-120s		INGV		
SPS2	Spezzano Piccolo	CS	Calabria	39,2910	16,3388	620	Trillium-120C		INGV		

SRES	Monte Soratte	RM	Lazio	42,2369	12,5099	410	Trillium-240s		INGV		
SRN	Sarande	(AL)	Albania	39,8800	20,0005	20	Trillium-40s		AC	01/01/15	
SSB3	San Sossio Baronia	AV	Campania	41,0785	15,2292	724	Trillium-40s	CMG-5T	IX		
SSFR	Montelago di Sassoferrato	AN	Marche	43,4363	12,7823	750	Trillium-40s		INGV		
SSM1	San Severino Marche	MC	Marche	43,2288	13,1770	240		SF3000	INGV		
SSP9	Sansepolcro	AR	Toscana	43,5739	12,1314	324	Le3D-1s		INGV		
SSY	Sortino	SR	Sicilia	37,1577	15,0737	600	Trillium-40s		INGV		
STAL	Staligial	PD	Friuli Venezia Giulia	46,2601	12,7104	625	Trillium-120s	Episensor	INGV		
STON	Ston	(HR)	Croazia	42,8715	17,6990	50	CMG40T-30s		CR		
STR4	Stromboli 4	ME	Sicilia	38,7739	15,2115	86	CMG40T-60s		INGV-OV		
STV	Sant'Anna di Valdieri	CN	Piemonte	44,2455	7,3260	930	Trillium-240s		INGV		
T0110	Collepietro - Navelli	AQ	Abruzzo	42,2294	13,7763	915	Trillium-120C		INGV		
TDS	Terranova da Sibari	CS	Calabria	39,6601	16,3376	244	Trillium-120C		INGV		
TEOL	Teolo	PD	Veneto	45,3617	11,6739	370	Trillium-120s		INGV		
TERO	Teramo	TE	Abruzzo	42,6228	13,6039	673	Trillium-40s	Episensor	INGV		
THL	Klokotos, Thessalia	(GR)	Grecia	39,5647	22,0144	86	STS2-120s		HL	01/01/15	
TIP	Timpagrande	KR	Calabria	39,1794	16,7583	789	STS2-120s	Episensor	MedNet		
TIR	Tirana	(AL)	Albania	41,3472	19,8631	247	STS2-120s		MN		
TN05	Corleto Perticara	ΡZ	Basilicata	40,3596	16,0748	588	Le3D-5s		INGV-TV	28/04/15	
TOLF	Tolfa	RM	Lazio	42,0641	12,0002	371	Trillium-40s	Episensor	INGV		
TRAV	Traversella	то	Piemonte	45,5127	7,7470	990	Trillium-40s		INGV-IG		
TRE1	Treia	MC	Marche	43,3112	13,3128	330		SF3000	INGV		
TREG	Tregnago	VR	Veneto	45,5230	11,1606	342		Episensor	INGV		
TREM	Isole Tremiti - San Nicola	FG	Puglia	42,1230	15,5100	120	Trillium-120C		INGV		
TRI	Trieste	TS	Friuli Venezia Giulia	45,7088	13,7642	161	Trillium-40s	Episensor	INGV		
TRIF	Trifonti	GR	Toscana	43,1148	10,9027	596	Trillium-40s		INGV		
TRIV	Trivento	СВ	Molise	41,7666	14,5502	598	Trillium-40s	Episensor	INGV		
TRTR	Tortoreto Alta	TE	Abruzzo	42,8081	13,9138	160	Trillium-40s	Episensor	INGV		
тто8	Gorgoglione	MT	Basilicata	40,3491	16,1822	511	Le3D-5s		INGV-TV	21/01/15	
TUE	Stuetta	SO	Lombardia	46,4722	9,3473	1924	STS2-120s	Episensor	MedNet		
USI	Ustica	PA	Sicilia	38,7079	13,1791	285	Trillium-40s		INGV		
VAGA	Valle Agricola	CE	Campania	41,4154	14,2342	795	Trillium-40s	Episensor	INGV		
VARA	Varagna	ΤN	Trentino Alto Adige	45,8260	10,8965	1735		Episensor	ST	03/02/15	
VARE	Varese	VA	Lombardia	45,8677	8,7700	1219	Le3D-5s		INGV		
VARN	Valmareno - Praderadego	ΤV	Veneto	45,9922	12,1051	1265	Trillium-120s		OGS-NI	10/07/15	
VBKN	Vesuvio - Bunker Nord	NA	Campania	40,8300	14,4299	951	CMG40T-60s		INGV-OV		
VCEL	Villa Celiera	PE	Abruzzo	42,3946	13,8406	1185	Le3D-5s		INGV		
VENL	Venezia Lido	VE	Veneto	45,4167	12,3765	4		Episensor	INGV		
VENT	Ventotene	LT	Lazio	40,7948	13,4216	108	Le3D-5s		INGV		
VINO	Villanova	UD	Friuli Venezia Giulia	46,2538	13,2755	608	CMG3T-100s	Episensor	OGS-NI		
VITU	Vitulano	BN	Campania	41,1833	14,6302	848	Le3D-5s		INGV		

VIVA	Vivaro	RM	Lazio	41,7502	12,7702	550	Trillium-120C		INGV		
VLC	Villa Colle Mandina	LU	Toscana	44,1591	10,3862	562	STS2-120s	Episensor	MedNet		
VLO	Vlore	(AL)	Albania	40,4686	19,4955	80	Trillium-40s		AC		
VLS	Valsamata Kefalonia	(GR)	Grecia	38,1768	20,5886	402	Le3D-20s		HL	01/01/15	
VMG	Villore del Mugello	FI	Toscana	43,9617	11,5438	450	S-13		INGV		
VOBA	Vobarno	BS	Lombardia	45,6429	10,5040	292		Episensor	INGV		
VSL	Villasalto	CA	Sardegna	39,4960	9,3780	370	STS1-VBB		MedNet		
VTIR	Vesuvio - Forestale	NA	Campania	40,8059	14,4242	612	CMG40T-60s		INGV-OV		
VTS	Vitosha	(BG)	Bulgaria	42,6180	23,2350	1490	STS1-VBB		MN		
VULT	Monte Vulture-Melfi	ΡZ	Basilicata	40,9549	15,6163	1101	Trillium-40s	Episensor	INGV		
VVLD	Villavallelonga	AQ	Abruzzo	41,8697	13,6232	1051	Trillium-40s		INGV		
WDD	Wield Dalam	(M)	Isola di Malta	35,8373	14,5242	44	STS2-120s		MN		
WTTA	Wattenberg	(A)	Austria	47,2637	11,6363	1764	STS2-120s		AO		
ZAG	Zagreb	(HR)	Croazia	45,8268	15,9868	188	CMG40T-30s		CR		
ZCCA	Zocca	МО	Emilia Romagna	44,3509	10,9765	700	Trillium-40s		INGV		
ZEN8	San Zeno di Montagna	VR	Veneto	45,6378	10,7319	596		Episensor	INGV		
ZIAN	Ziano	ΤN	Trentino Alto Adige	46,2764	11,5632	1154	Le3D-1s		ST		
ZONE	Zone	BS	Lombardia	45,7636	10,1171	691	Trillium-40s	Episensor	INGV	01/12/15	
ZOU2	Zovello - Cleulis	UD	Friuli-Venezia Giulia	46,5584	12,9729	1911	Trillium-120s		OGS-NI	10/07/15	
ZOVE	Zovencedo	VI	Veneto	45,4536	11,4876	376		Episensor	INGV		

QUADERNI di GEOFISICA

ISSN 1590-2595

http://istituto.ingv.it/it/le-collane-editoriali-ingv/quaderni-di-geofisica.html/

I QUADERNI DI GEOFISICA (QUAD. GEOFIS.) accolgono lavori, sia in italiano che in inglese, che diano particolare risalto alla pubblicazione di dati, misure, osservazioni e loro elaborazioni anche preliminari che necessitano di rapida diffusione nella comunità scientifica nazionale ed internazionale. Per questo scopo la pubblicazione on-line è particolarmente utile e fornisce accesso immediato a tutti i possibili utenti. Un Editorial Board multidisciplinare ed un accurato processo di peer-review garantiscono i requisiti di qualità per la pubblicazione dei contributi. I QUADERNI DI GEOFISICA sono presenti in "Emerging Sources Citation Index" di Clarivate Analytics, e in "Open Access Journals" di Scopus.

QUADERNI DI GEOFISICA (QUAD. GEOFIS.) welcome contributions, in Italian and/or in English, with special emphasis on preliminary elaborations of data, measures, and observations that need rapid and widespread diffusion in the scientific community. The on-line publication is particularly useful for this purpose, and a multidisciplinary Editorial Board with an accurate peer-review process provides the quality standard for the publication of the manuscripts. QUADERNI DI GEOFISICA are present in "Emerging Sources Citation Index" of Clarivate Analytics, and in "Open Access Journals" of Scopus.

RAPPORTI TECNICI INGV

ISSN 2039-7941

http://istituto.ingv.it/it/le-collane-editoriali-ingv/rapporti-tecnici-ingv.html/

I RAPPORTI TECNICI INGV (RAPP. TEC. INGV) pubblicano contributi, sia in italiano che in inglese, di tipo tecnologico come manuali, software, applicazioni ed innovazioni di strumentazioni, tecniche di raccolta dati di rilevante interesse tecnico-scientifico. I RAPPORTI TECNICI INGV sono pubblicati esclusivamente on-line per garantire agli autori rapidità di diffusione e agli utenti accesso immediato ai dati pubblicati. Un Editorial Board multidisciplinare ed un accurato processo di peer-review garantiscono i requisiti di qualità per la pubblicazione dei contributi.

RAPPORTI TECNICI INGV (RAPP. TEC. INGV) publish technological contributions (in Italian and/or in English) such as manuals, software, applications and implementations of instruments, and techniques of data collection. RAPPORTI TECNICI INGV are published online to guarantee celerity of diffusion and a prompt access to published data. A multidisciplinary Editorial Board and an accurate peer-review process provide the quality standard for the publication of the contributions.

ISSN 2039-6651

http://istituto.ingv.it/it/le-collane-editoriali-ingv/miscellanea-ingv.html

MISCELLANEA INGV (MISC. INGV) favorisce la pubblicazione di contributi scientifici riguardanti le attività svolte dall'INGV. In particolare, MISCELLANEA INGV raccoglie reports di progetti scientifici, proceedings di convegni, manuali, monografie di rilevante interesse, raccolte di articoli, ecc. La pubblicazione è esclusivamente on-line, completamente gratuita e garantisce tempi rapidi e grande diffusione sul web. L'Editorial Board INGV, grazie al suo carattere multidisciplinare, assicura i requisiti di qualità per la pubblicazione dei contributi sottomessi.

MISCELLANEA INGV (MISC. INGV) favours the publication of scientific contributions regarding the main activities carried out at INGV. In particular, MISCELLANEA INGV gathers reports of scientific projects, proceedings of meetings, manuals, relevant monographs, collections of articles etc. The journal is published online to guarantee celerity of diffusion on the internet. A multidisciplinary Editorial Board and an accurate peer-review process provide the quality standard for the publication of the contributions.

Coordinamento editoriale

Francesca DI STEFANO Istituto Nazionale di Geofisica e Vulcanologia

Progetto grafico Barbara ANGIONI Istituto Nazionale di Geofisica e Vulcanologia

Impaginazione Barbara ANGIONI Patrizia PANTANI Massimiliano CASCONE Istituto Nazionale di Geofisica e Vulcanologia

©2022 Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata, 605 00143 Roma tel. +39 06518601

www.ingv.it

