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1. Laki Hardware Architecture 
 

Laki is a High Performance Computing system installed at INGV-Pisa to support the fluid-dynamic 
and volcanology modelling activity.  

Laki is built with a traditional architecture used for high-performance computing clusters as pioneered 
by the Network of Workstations project [Anderson et al., 1995] and popularized by the Beowulf project 
[Sterling et al., 2005]. This system is composed of standard high-density servers, a Gigabit Ethernet network 
and a high-performance InfiniBand interconnection (Figure 1). We have defined the cluster architecture to 
contain a minimal set of high-density components in an effort to build reliable systems by reducing the 
component count and by using components with large mean-time-before-failure specifications. Information 
and access to specific monitoring tools can be found at http://laki.pi.ingv.it; the site can be reached only from 
inside INGV network, or through an INGV VPN connection. 

 

 
 

Figure 1. Laki Hardware Architecture. 
 
 
1.1 Master and Computing Nodes 

The cluster is made by 4 chassis containing 4 nodes each and 1 Master Node. Such architecture saves 
energy and space because a single chassis can manage more efficiently powering and cooling of multiple 
nodes. All 16 computing nodes are equipped with a dual processor board with the following specifications:  

 
Each node has 2 CPU Intel(R) Xeon(R) CPU E5-2630 v3 (Haswell), with the following specifications: 

• 8 cores;  
• 2.40 GHz base processor frequency (Turbo Boost at 3.20 GHz);  
• 64 bit instruction set;  
• 4 memory channels;  
• Integrated Memory Controller. 
 
RAM is composed of 8 DDR4 SDRAM banks, each one with 8GB capacity, with clock speed of 2133 

MHz, for a total of 64 Gbytes per board. Memory cache is internal to the processor and is distributed as 
follows: 
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On each computing node, a single hard disk (1 TB SATA 3 7.2K Rpm) is installed, which hosts the 
Operating System. The master node has a LSI 9361-4i RAID controller which manages 10 hard disks (4 TB 
SAS 7.2K Rpm) in RAID 5 configuration (for a total volume size of 36 TB, used for users home storage) and 
2 hard disks (500 GB SATA 3) in RAID 1 configuration for the operating system. The nominal average 
dissipated thermal power (TDP) is 85 W per processor and the maximum consumption is 6.5 kW. The Laki 
cluster measured power consumption is 2.7 kW without load. 
 
1.2 Interconnection: Gigabit Ethernet and Infiniband Switches  

The Gigabit Ethernet switch has 24 RJ-45 autosensing 10/100/1000 Mbps ports, with 104 Gb/s 
routing/switching capacity. All the compute nodes are connected via Gigabit Ethernet to a front-end. 
Infiniband switch has 18 40/20/10 Gbps auto-negotiation ports, with switching capacity of 2.88Tbps. The 
Ethernet network is used for the cluster management and monitoring (through SNMP – Simple Network 
Management Protocol), scheduling (through SSH – Secure Shell) and I/O (through the NFS – Network File 
System), while the Infiniband network is used for communications (through the MPI – Message Passing 
Interface).  
 
 
2. Software Architecture 
 

In November of 2000, the SDSC Grids and Clusters group (www.sdsc.edu) released the first version 
of the NPACI Rocks cluster toolkit. NPACI Rocks (www.rocksclusters.org) is a complete cluster-aware 
Linux distribution based upon CentOS (www.centos.org) with additional packages and programmed 
configuration to automate the deployment of high-performance Linux clusters. The CentOS distribution was 
chosen because of two key features: 1) the software packaging tool (RPM), and 2) the script-driven software 
installation tool (Kickstart), that describes a node software stack. By utilizing RPM and Kickstart, a 
mechanism has been developed that support fully-automated node installation, an important feature when 
deploying clusters. Although the focus of Rocks is on flexible rapid system configuration (and re-
configuration), the steady-state behaviour of Rocks has the look and feel much like any other commodity 
cluster containing de facto cluster standard services (e.g., Portable Batch System - PBS Torque, Ganglia 
monitoring and Message Passing Interface – MPI). 

 
2.1 Kickstart and RPM 

Kickstart is the CentOS-provided mechanism for automating system installation. Kickstart, together 
with CentOS software packaging format (RPM), has enabled cluster builders to specify the exact software 
package and software configuration of a system. This textual description is then used to build a software 
image on the target platform. Although managing a single Kickstart file can be simpler than managing 
cluster file images, Kickstart is limited in terms of programmability. The lack of a macro language and a 
code re-use model potentially requires a unique Kickstart file for every node in a cluster. Rocks solves this 
problem by generating Kickstart files on-the-fly based on the programmatic target system description, and 
the site-specific configuration data stored in a MySQL database. Rocks replaces the static file with a script 
(CGI) to dynamically produce a node-specific Kickstart file. The integration of a node in a cluster requires 
the node to boot an installation kernel using network boot (PXE) or a physical boot media (e.g., CDROM or 
hard disk). This installation kernel requests a Kickstart file over HTTP, and executes this file installing the 
appropriate software packages and applying software configuration. The process of installing software on 
any system always contains two components: the installation of software packages and the configuration of 
software packages. Often the configuration of a package is such that it simply accepts the defaults, but 
sometimes a different configuration from the default is required. The traditional single desktop approach to 
this process is to install software and then, manually, to configure it according to specific requirements. A 
common extension of this process to the cluster deployment, is to manually configure a single node and then 
propagate the resulting system image to all the nodes in the cluster. This works well with homogeneous 
hardware. Rocks treats software installation and software configuration as separate components of a single 
process. This means that manual configuration required to build a file image is instead automated. 
Installation of software packages is done in the form of package installs according to the functional role of a 
single cluster node. This is also true for the software configuration. Once both the software packages and 
software configuration are installed on a machine, we refer to the machine as an appliance. Rocks clusters 
contain Front-end, Compute, and NFS appliances (Network File System). A simple object-oriented 
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framework (expressed in XML) is used to allow cluster architects to define new appliance types and take full 
advantage of code reuse for software installation and configuration. 
 
2.2 The module environment 

The module package (https://modules.sourceforge.net) is a useful package with which the user can, via 
the ‘module’ command, use additional software not included in Rocks release. On the Laki cluster, instead of 
the default OpenMPI (1.6.2) installed through Rocks, a custom OpenMPI (1.6.5) has been rebuilt with 
support for Torque and Intel Infiniband switch, installed under /share/app/ path and inserted in the module 
configuration file. The directory /share/app/ is on master node and shared with all nodes; the users can load 
the OpenMPI 1.6.5 environment with the ‘module load openmpi-1.6.5’ command. Several other environment 
definitions can be loaded via the module command, and a full list of these packages can be obtained issuing a 
‘module avail’ command. 
 
2.3 PBS Torque 

As for every high computing facility, we have installed a batch system, i.e. a computer application for 
controlling unattended background program execution of jobs. This is commonly called program batch 
scheduling (PBS), as execution of non-interactive jobs is often called batch processing, while the data 
structure of jobs to run is known as the job queue. We went for the TORQUE (Terascale Open-source 
Resource and QUEue Manager, https://wikipedia.org/TORQUE) resource manager, as it provides 
enhancements over standard OpenPBS like greater fault tolerance, and higher scalability [7, 8]. Each user 
can submit his simulation using simple bash scripts that specify parameters requested by the batch system, as 
PBS job name, number of requested cores or desired reserved time. In the present configuration, no 
parameters are taken into account to assign a job priority. All the jobs are simply executed as soon as there 
are enough available resources on the machine, and run on until the requested time expires. As soon as the 
usage of the machine would increase, or the number of users grow, it will be possible that parameters as the 
mean time of usage of machines, per research group, or the level of optimization of the jobs submitted will 
be taken into account to assign a job priority. 
 
2.4 Ganglia Monitoring Tool 

This cluster is equipped with the Ganglia tool, a distributed monitoring system for high-performance 
computing systems such as clusters and Grids (https://wikipedia.org/Ganglia). 

This tool can be accessed via web (http://laki.pi.ingv.it/wordpress) and allows the user to monitor the 
usage of the machines, using carefully engineered data structures and algorithms to achieve very low per-
node overheads and high concurrency. It reports substantially what a user manually would see connecting to 
a node and issuing a “top” command, but in a more compact and understandable way, through graphs that 
report also historical statistics (such as CPU load averages or network utilization) for all machines that are 
being monitored. 
 
 
3. The HPL Linpack Benchmark 
 

To test the hardware/software installation and the cluster performance, we have run the HPL Linpack 
benchmark, a portable implementation of HPLinpack used to provide data for the Top500 list 
(https://www.top500.org/lists). HPL consists of an algorithm for solving a general dense matrix problem Ax 
= b in 64-bit floating point arithmetic. The general idea is to decompose the matrix A into the product of 
simpler, well-structured matrices, which can be easily manipulated to solve the original problem. This goal is 
achieved using an algorithm based on LU decomposition with partial pivoting; the matrix type is real and 
dense, with matrix elements distributed randomly in the range [−1, 1]. Once the system has been solved, the 
input matrix and the right-hand side are regenerated and the residuals are computed [Dongarra et al., 2010]. 
The package uses 64-bit floating-point arithmetic and portable routines for linear algebra operations and 
message passing. The latter is implemented through OpenMPI, while for the linear algebra several 
possibilities exist. After testing the standard BLAS libraries, we decided to go for the open-source optimized 
OpenBLAS implementation of a Basic Linear Algebra. 
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Table 1. Specification of Hardware and Software used for benchmarks. 
 
 
 

3.1 HPL Setup 
Once the benchmark is correctly compiled and all its dependencies are satisfied (i.e. a proper BLAS 

library has been installed), the executable is built. To run the benchmark one must provide an input file that 
specifies several options available for HPL. One has to tune this input file in order to obtain the best possible 
performance out of the cluster: this is not a trivial problem at all, as a large number of options are available 
and some of them imply a rather deep understanding of the implemented algorithm, more than a basic 
knowledge of the involved numerical methods.  
 

We used as a start the input file generated at www.advancedclustering.org, then tuned manually some 
of the parameters. Figure 2 reports a typical HPL input file. The ones relevant for this report are: 

• N: specifies the size of the matrix to decompose.  
• NB: specifies the block size1.  
• P, Q: specify the number of process rows (P) and columns (Q) of the execution grid, which is equal 

to the number of available cores. 
 
The last two parameters specify also the number of cores used by the run: it must be less than or equal 

to P*Q. In particular HPL prefers “square” or slightly flat process grids. Unless one is using a very small 
process grid, is better to stay away from the 1-by-Q and P-by-1 process grids. The remaining lines allow 
specifying algorithmic features (please visit www.netlib.org/HPL/tuning for details).  

                                                             
1 HPL uses the block size NB for the data distribution as well as for the computational granularity. From a data 
distribution point of view, the smallest NB, the better the load balance. From a computation point of view, a too small 
value of NB may limit the computational performance by a large factor because almost no data reuse will occur in the 
highest level of the memory hierarchy. The number of messages will also increase. Efficient matrix-multiply routines 
are often internally blocked. Small multiples of this blocking factor are likely to be good block sizes for HPL. 
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Figure 2. Example of HPL Linpack input file.  
 
 
 
3.2 HPL Results 
 

In Table 2 we report the results obtained running HPL on 256 cores, using different problem sizes and 
different run options. The theoretical peak performance is defined as:  

 
FLOPS = # cores × clock × # (FLOP/clock) 

 
The theoretical peak has to be regarded as an asymptotic limit for the performance. The third factor (the 

number of floating point operations per clock cycle) is indeed associated to vectorization: nominally, for the 
E2630v3 CPU, Intel claims 16 operations per clock cycle, which is nonetheless very difficult to achieve. 
Several factors contribute to lowering this value, depending on the specific application: different algorithms are 
able to exploit vectorization at different levels, depending on implementation and also on compiling options. In 
the present case and for this specific benchmark, we obtained a value of about 8 FLOP/(clock cycle). 
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N NB TFLOPS Ethernet Infiniband Blas OpenBlas 

327552 192 2.62 ✓   ✓ 

327552 192 2.22  ✓ ✓  

 192 4.47  ✓  ✓ 

347520 128 4.39  ✓  ✓ 

 192 4.50  ✓  ✓ 

 256 4.46  ✓  ✓ 

Theoretical Peak 9.83     
 

Table 2. Performance (in TeraFLOPS) of HPL Linpack on 256 Laki cores. 
 
 

The reported results are obtained running with the ‘-bind-to-core’ MPI option (Figure 3 and Figure 4). 
This is really important as it prevents the OS from moving the processes from core to core in an attempt to 
optimize channel memory usage. This is useful if the machine load is around 50%, but when the workload is 
at a peak this creates an amount of requests that is impossible to satisfy, leading to a situation in which a 
performance degradation on the whole node is likely. Finally, although many tutorials suggest running HPL 
without the use of a job scheduler, our results demonstrated that running HPL through PBS entails no 
significant overhead. We have then increased N, trying also different block sizes, obtaining the best estimate 
of the Laki peak computational power: 4.495 × 103 GFLOPS. It is not possible to run bigger problems, as 
they would saturate the RAM capacity, causing the OS to kill the job. 

 
 

 
 

Figure 3. Screenshot of the top command. Without the –bind-to-core MPI option, the value of the average 
cluster load blows up and the FPUs appears to be overloaded (load exceeds 100%) as a result of the overhead 
introduced by the OS scheduling mechanism. 
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Figure 4. Screenshot of the GANGLIA monitoring tool. The two peaks refer to the same test run without 
and with the –bind-to core MPI option. Without core binding, the maximum aggregated load is about 4.5 
times larger. 
 
 
 
3.3 HPL Scaling Performance 

Figure 5 represents the performance in GFLOPS, on 256 cores, as a function of the matrix size N. The 
performance clearly deteriorates for both too small and too big problems; this ensures that we have measured 
the actual peak performance, and not only a local maximum.  

Once the peak performance has been measured we studied the scaling properties of the HPL 
benchmark by keeping the load per processing element constant. For this purpose we used the input file that 
gave us the peak performance, but with different number of cores, reducing accordingly the size of the 
problem and adapting the grid. What we obtained is an almost linear scaling (Figure 6): this was quite 
expected, as the HPL benchmark has been written to measure computing efficiency and not to stress 
communication. Anyway as pointed out in Figure 9, some problems in the intra-node scaling are already 
evident, producing a decrease of parallel efficiency to about 0.75 at N=8. This is also one of the main reasons 
why we cannot stop here our study: real-world application use communication, and do it quite intensively. 
We can say that the numbers obtained so far are satisfactory, but are not at all exhaustive to give an idea of 
the performance to be expected during any real use-case. 
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Figure 5. HPL Performance with changing matrix dimension. The curve is monotonically approaching the 
maximum value, and then decreasing highlighting a saturation of available RAM. 
 
 

 
 
Figure 6. Linear scaling of HPL in log-log scale. Results obtained with the same input file as the optimal 
benchmark with decreasing matrix size. 
 
 
 
4. The HPCG Benchmark 
 

HPL is the most widely recognized and discussed metric for ranking high performance computing 
systems. However, HPL is increasingly unreliable as a true measure of system performance for a growing 
collection of important science and engineering applications. The problem is that the dominant calculations 
in this algorithm are dense matrix-matrix multiplication and related kernels: with proper organization of the 
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computation, data access is predominantly unit stride and is mostly hidden by concurrently performing 
computation on previously retrieved data. This kind of algorithm strongly favours computers with very high 
floating-point computation rates and adequate streaming memory systems, but while these types of patterns 
are commonly found in real applications, additional computations and access patterns are also very common. 
HPL as a metric is incapable of measuring these types of patterns, but the system ability to effectively 
address this second kind of patterns is an important indicator of system balance: for this reason in 2013 J. 
Dongarra and P. Luszczek proposed a new benchmark [Dongarra et al., 2013], called HPCG (High 
Performance Conjugate Gradient Benchmark). This new application has been regarded as a new metric for 
high performance computing for various reasons: 

1. Provides coverage of the major communication and computational patterns.  
2. Represents a minimal collection of the major patterns.  
3. Rewards investment in high-performance of collectives.  
4. Rewards investment in local memory system performance. 

 
4.1 HPCG Setup 

This benchmark generates a symmetric positive-definite matrix A and a corresponding right-hand side 
b, plus and initial guess for x. In a second time, it sets up data structures for the local symmetric Gauss-Seidel 
preconditioner, compute pre-conditions, post-conditions and invariants that will aid in the detection of 
anomalies during the iteration phases. Overall, m iterations are performed n times, using the same initial 
guess each time, where m and n are sufficiently large to test system uptime. By doing this we can compare 
the numerical results for “correctness” at the end of each m-iteration phase. Linear system size is a parameter 
that can be chosen via an input file: to give relevant results the size has to be large enough so that data arrays 
accessed in the iteration loop do not fit in the cache of the processor, a condition that would be unrealistic in 
a real application setting. At the end of every run a log file is produced for reporting information on 
performance: the HPCG rating is a weighted GFLOP/s value that is composed of the operations performed in 
the PCG iteration phase over the time taken. The overhead time of problem construction and any 
modifications to improve performance are divided by 500 iterations (the amortization weight) and added to 
the runtime. HPCG can be run in just a few minutes from start to finish. However, standard runs must be at 
least 1800 seconds (30 minutes). Moreover, as stated in the HPCG documentation, the problem size should 
be large enough to occupy a significant fraction of “main memory”, at least 1/4 of the total. 

 
 

 
Figure 7. Performance of the parallel HPCG Benchmark with different matrix dimensions. 
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Figure 8. Scaling properties of HPCG in log-log scale, keeping constant the load per processing element 
(Nx=136). The scaling is linear above N=16. 
 
 
 
4.2 HPCG Results 

First of all we tuned the problem dimension to obtain the best performance out of Laki cluster (Figure 
7): opposite to HPL, increasing the size does not increase performance. Apart for Nx = 16, for which the 
problem fits L3 cache, the performances are pretty much stable, slightly decreasing with increasing matrix 
size. We chose as the best candidate Nx = 136, a value for which 1/4 of the machine memory is already fully 
occupied.  

Once the optimal size is decided we measure the peak performance: we obtain 184.65 GFLOPS 
(Figure 8), which compared to HPL 4.49 TFLOPS seems a very small performance. However, this was an 
expected result: it is a well known fact that systems vendor ends up making some either/or decisions about 
architecture versus tailoring systems to meet HPL application demands. For Laki cluster, the HPL over 
HPCG ratio is 4.11%. This is a satisfactory result: usually HPCG benchmark gives peak performance orders 
of magnitude smaller than HPL benchmark, the ratio between HPL and HPCG never exceeding 10% (see 
Appendix A for more detailed numbers).  

Focusing on scaling, the linear behaviour for the number of cores greater than 8 is clear. For a number 
of cores ≤ 8, i.e. in the intra-node part of the curve, the trend is less than linear and not at all satisfying. This 
was also observed on the HPL Linpack application, but less visible, due to the different communication 
pattern implemented in the benchmarks; however, this is clearly depicted in Figure 9, where efficiency is 
shown as the ratio (T1 /n ∗Tn) , with T1 and Tn execution time on 1 and n cores, respectively. As already said 
at the beginning of this section, the HPCG benchmark implements more common and realistic load scenarios 
for the machine: this scaling behaviour will be in fact retrieved for real case applications as OpenFOAM and 
ASHEE (see Sec. 5.2, 5.4). 
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Figure 9. Comparison of the Efficiency of HPL and HPCG on the Laki cluster. The behaviour is non-linear 
in both cases in the intra-node part of the curve. Such a trend is clearer for HPCG because of the more 
intense communication pattern. 
 
 
 
5. The OpenFOAM Benchmark 
 

A large number of simulations will be performed on the Laki cluster with OpenFOAM® 
(www.openfoam.org). For this reason, we have run a simplified use case, to try to identify some “best 
practices” for OpenFOAM simulations on Laki. Before starting with the actual benchmarks we studied how 
is OpenFOAM performing with different basic OpenMPI options. 
 
5.1 An Embarrassingly Parallel Application 

A plethora of options exists for MPI commands and, in particular, for the ‘mpirun’ command. To get a 
basic understanding of which option is preferable, we built some very simple OpenFOAM applications that 
perform basic operations, namely: 

1. Copy a constant vector of size 106 to another vector (no thread inter-core communication).  
2. Allocate a vector of 106 random numbers (no communication among processors).  
3. Allocate and copy a vector of 106 random numbers to another vector (no communication).  
4. Allocate, copy and interpolate a vector of 106 on the faces (with communication).  

 
These are the various MPI options (www.open-mpi.org) used: 
• bind-to-none: default MPI behaviour; allow the OS to manage the binding of the process to the 

cores, in attempt to balance loads.  
• bind-to-socket: bind each MPI process to a processor socket. The OS is still able to move 

processes between different cores.  
• bind-to-core: bind each MPI process to a core, preventing the OS to move it from core to core 

during the run.  
• loadbalance: tries to spread processes out fairly among the nodes.  
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We performed a test with this trivial application to measure the parallel performance of the more basic 
part of OpenFOAM: finite volume vector treatment, with and without inter-core thread communication. For 
each combination of OpenMPI options, we repeated each test 100 times in order to compute the average and 
standard deviation. These tests were made reserving 64 (or 16) cores for each simulation (through PBS 
parameters) and then specifying with the -np option the number of cores to use for the actual simulation. 

Figures 10-14 report the code efficiency of the different procedures with the different mpirun options. 
Numbers in legend of Fig. 13 and 14 report the efficiency (with their standard deviation) of each test performed 
using all the reserved cores. As a general statement, the mpirun options can bring remarkable changes in 
performance, even for very simple applications not involving any MPI communication. This is likely due to 
interaction of the application with the operating system and to bottlenecks associated with memory access. 

For all the tests a rather high variability in performance is also evident, as reflected by the large 
standard deviations. It is clearly important that the performance of a code is stable, so one of the objectives is 
to reduce the standard deviation. In order to address this issue, we explore the best bind- option to be used. 
From Figs. 13 and 14 (see the legend) we conclude that the -bind-to-core option is the one resulting in the 
lowest performance variability. 

Analysing the graphs (Figs. 10-14), it seems that the -loadbalance option gives the best performance 
results (showing sometimes super-linearity). However, these graphs are a little misleading. The reason is that 
this option is useful if one can access a number of cores larger than the number of used MPI processes: in 
this case, mpirun will try to manage jobs among the nodes to optimize load values. But this also implies that 
many cores are no longer accessible by other applications. When the machine nodes are saturated (last point 
of the curves in Figs. 10-14 this option has little impact on performance. Moreover, we observe that the 
advantages of the –loadbalance option disappear when using a –bind option, since the OS can no longer 
move the threads. We conclude that the –loadbalance option is useless for our HPC applications. 

Communication is not the main issue causing the deterioration of performance up to 64 cores (this is also 
true up to 256 cores, see next sections). Indeed, solving a problem with or without inter-thread communication 
does not influence much the performance. They are more likely influenced by the memory access. Comparing 
Fig. 13 and 14, we notice that the efficiency decreases to ~ 0.6 between 1 and 8 threads, because of the 
saturation of the 4 memory channels of each 8-cores CPU. Then, increasing the number of cores used, the 
efficiency remains optimal, meaning that once half of the node is full, MPI is working in ideal conditions. 

We expect to find this intra-node behaviour in all the OpenFOAM applications, since it is present even 
in the simplest finite volume application possible. 

 

 
 
Figure 10. Efficiency of copying a constant vector to another, using 1 to 64 cores, always reserving 64 cores. 
Different combinations of MPI options are used. The error bars are evaluated computing the standard 
deviation from 100 identical runs. 
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Figure 11. As in Figure 10, but for the allocation of a random vector. 

 
 
 
 
 

 
 

Figure 12. As in Figure 10, but for the allocation and copy of a random vector. 
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Figure 13. As in Figure 10, but for the allocation, copy and interpolation of a random vector. 
 
 
 
 
 

 
 

Figure 14. Same of Figure 13, but with 16 cores reserved. 
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5.2 rhoPimpleFoam Case 
To test the cluster performance on a more realistic test case, we run the ‘rhoPimpleFoam’ solver for 

compressible fluids (as implemented in the standard distribution of OpenFOAM 3.0), as it is similar to 
ASHEE, a code written and used at INGV to simulate volcanic ash plumes [Cerminara et al., 2016]. We have 
set up a forced plume test case, in which a high-temperature jet of fluid flows through an inlet, entering into 
a box.  

The solver does not account for gravity, so the jet simply goes toward the top of the box, generating a 
turbulent flow of compressible fluid with barotropic boundary conditions [Cerminara et al., 2014] (Fig. 15). 
To measure the performance, we have used the total elapsed time of a simulation with a fixed number of 
time-steps. We run two different sets of simulations, with different mesh sizes (Table 3) and tested different 
OpenFOAM options combined with OpenMPI directives. In addition, the ‘renumberMesh’ utility of 
OpenFOAM has been tested. This is executed by the command ‘mpirun -n N renumberMesh -overwrite –
parallel’ with N equal to the number of cores. This is useful when running on large numbers of cores to 
renumber the cell list in order to reduce the memory bandwidth (https://openfoamwiki.net/RenumberMesh). 
 

 
Table 3. Two different mesh resolutions have been tested for the OpenFOAM benchmark. 

 
 

 
Figure 15. Forced plume simulation with rhoPimpleFoam. Colour scale indicates the density gradient, 
highlighting shock waves. 
 
 

We started studying the best MPI + OpenFOAM setup to use when running on multi-core machines. 
Fig. 16 highlights again the importance of the -bind-to-core MPI option: for a number of cores larger than the 
number of memory channels per node (8 on Laki cluster) the OS default behaviour -bind-to-none is clearly 
deteriorating the scaling properties of the problem. The overall scaling efficiency with -bind-to-core option is 
reported in Figure 17 for two different problem sizes. 

To try to explain the intra-node behaviour of the code, we have introduced timing instructions in the 
solver to report the cumulative execution time of the main routines, for each time step. They have been 
subdivided in four main categories: matrix assemblage; vector assemblage; matrix inversion; LES (Large 
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Eddies Simulation) routines. These four contribute to almost 100% of the total execution time per time step. 
In Figure 18 we report the results obtained on 4 cores for the high-resolution mesh: in the first part of the 
simulation the scaling efficiency is near 100%. Then simulation time starts to increase at a random time-
steps. This increase cannot be ascribed to a single routine, but it is instead common to all the processes. This 
tests have been repeated more than once, to see if some patterns can be highlighted, but the results have been 
discouraging: these jumps appear always, but at different time-steps, and also their height differs from run to 
run. A possible reason for this behaviour is again the memory access. The “steps” in the execution time per 
time step are possibly related to the progressive saturation of the various memory levels. This would explain 
why they are almost absent when we reduce the memory request by increasing the number of cores (Figure 
19). However, to thoroughly analyse this problem, specific profiling/monitoring tools should be applied in 
the future. 

 
 

 
 

Figure 16. Scaling of rhoPimpleFoam with the low-resolution mesh. The –bind-to-core is an essential MPI 
option. The renumberMesh OpenFOAM utility can also be used to improve the parallel efficiency. 
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Figure 17. Scaling of rhoPimpleFoam at fixed problem size, increasing the number of processors, for two 
different resolutions. MPI parallel efficiency is satisfactory for N>8, and 10.000 cells per core; intra-node 
efficiency is the main concern. 
 
 

 
 
Figure 18. Profiling of an OpenFOAM application on 4 cores, with the high-resolution mesh. Efficiency is 
about 100% at the beginning of the simulation, when the averaged execution time of every routine is stable. 
It then starts increasing in a step-wise manner, thus degrading the performance. 



 

 
 

24 

 
 
Figure 19. Profiling on 32 cores with the high-resolution mesh. The step-wise structure of Figure 18 has 
disappeared. The peak at about 0.004 s is probably due to the operating system but has not effect on the 
global performance. 
 
 
 
5.3 ASHEE 

As already mentioned the aim of this study is to understand how to run in the most efficient way 
OpenFOAM and OpenFOAM-like simulations. In particular our interest is focused on ASHEE, a code that 
numerically simulates the non-equilibrium dynamics of polydisperse gas-particle mixtures forming volcanic 
plumes [Cerminara et al., 2016]. We repeated for this application the same scaling study of Fig. 17, using 
two different resolutions at the scale of volcanic plumes, such that the overall number of cells is comparable 
with the one used in the previous test-case; also the same number of time steps is used to be able to compare 
results.  

Not surprisingly, the outcomes are similar: in Figure 20 we still see the weird behaviour from 1 to 8 
cores, i. e. in the intra-node part of the graph. Beyond 8 cores an almost linear scaling (In  Figure 20 the 
horizontal axis has log scale) is retrieved for the high-resolution curve (blue-dotted curve). For the low 
resolution case (green-dotted line) the performance is worsening for a number of cores greater than 32: 
again, this means that the problem has become too small to scale properly, a result already found as 
discussed in the previous section. 
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Figure 20. Weak scaling of ASHEE at two different resolutions. Again, the intra-node efficiency drop 
appears to be the main problem of the Laki architecture. 
 
 
 
6. Conclusion 
 

The Laki cluster has been installed in early 2016 at INGV, Sezione di Pisa, to support modelling 
activity in Computational Fluid Dynamics of volcanic processes. In this report, we have analysed its 
performance by means of the standard HPL and HPCG standard benchmarks and through one standard 
OpenFOAM use case and an ASHEE volcanic plume simulation. Results demonstrate that the overall cluster 
performance is satisfactory, with a peak performance, obtained on the HPL benchmark, of about 4.5 
TFLOPS. On the other hand, scalability properties are not fully satisfactory, showing a significant intra-
node performance drop. This is not due to any MPI overhead but it is likely associated to bottlenecks in 
memory access. To overcome this difficulty, specific parallelization strategies should be implemented to 
exploit the memory sharing in the node. Overall, the MPI performance is very good, thanks to the low 
latency and large bandwidth of the InfiniBand interconnection. 
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A Appendix 
 
The HPCG benchmark is committed to understanding how large systems handle the strain of actual 

application performance, trying to address the limitations that many centres felt over HPL, i.e. that it did not 
adequately measure the potential to express real application performance. This might mean that, as a result, 
one will have less “appealing” numbers to share with the world: this is the reason why only 20 among many 
supercomputing centres decided to run and share result for this application (Figure 21) back in 2015. Things 
are changing slowly over time: of the 500 supercomputers that make the Linpack-based Top 500 list in June 
2016, the newer HPCG benchmark had over 80 participants. Its becoming more and more evident the 
relevance of this benchmark, as both vendors and HPC centres began to understand the need to have such 
results at hand when it comes to forecast the performance expected from real-word applications. To be 
clearer, in Table 4 results from supercomputers leading the Top500 list are reported. The gap between HPL 
and HPCG benchmark is striking, and, taking a look at the different architectures beyond the reported 
numbers is clear that GPU accelerated systems, that tend to perform well on LINPACK, really do not pull 
the same power on this real-world application-oriented benchmark. As Jack Dongarra, founder of the 
original HPL Linpack, author and one of the first promoter HPCG, said: “It’s not unlike HPL where GPUs 
and co-processors have a lower achievable percentage of peak because it’s harder to extract performance 
from these. It’s not just programming ease either, it’s about the interconnect. When that problems goes away 
it will change the game dramatically”. Since the rise in accelerators and co-processors (more on that in the 
context of the Top 500) is not expected to halt soon-meaning these flaws will become far more pronounced 
in the next years. 

 
 

 
 
Figure 21. Performance results for the 20 total submissions for November 2014 Top500 supercomputer list. 
Theoretical peak performance, HPL peak performance, and HPCG peak give rather different numbers. 
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Table 4. Respective ranking of the first 5 supercomputers in the June 21, 2016 Top500 list. It is evident that 
the presence of accelerators does not help in real-world computation, better represented by HPCG numbers. 
Anyway this is not a sign that this kind of architectures is doomed to fail, on the contrary, since a great deal 
of the interconnect problem with co-processors and GPUs will be a thing of the past, once data never has to 
leave its chip home. 
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