
apporti
tecnici

PyGLog: a Python software for
handling GNSS metadata and log-files

Anno 2018_Numero 396

Istituto Nazionale di
Geofisica e Vulcanologia

t
ISSN 2039-7941

t

Direttore Responsabile
Silvia MATTONI

Editorial Board
Luigi CUCCI - Editor in Chief (INGV-RM1)
Raffaele AZZARO (INGV-CT)
Mario CASTELLANO (INGV-NA)
Viviana CASTELLI (INGV-BO)
Rosa Anna CORSARO (INGV-CT)
Mauro DI VITO (INGV-NA)
Marcello LIOTTA (INGV-PA)
Mario MATTIA (INGV-CT)
Milena MORETTI (INGV-ONT)
Nicola PAGLIUCA (INGV-RM1)
Umberto SCIACCA (INGV-RM2)
Alessandro SETTIMI
Salvatore STRAMONDO (INGV-ONT)
Andrea TERTULLIANI (INGV-RM1)
Aldo WINKLER (INGV-RM2)

Segreteria di Redazione
Francesca Di Stefano - Referente
Rossella Celi
Tel. +39 06 51860068
redazionecen@ingv.it

in collaborazione con:
Barbara Angioni (RM1)

REGISTRAZIONE AL TRIBUNALE DI ROMA N.173|2014, 23 LUGLIO
© 2014 INGV Istituto Nazionale di Geofisica e Vulcanologia
Rappresentante legale: Carlo DOGLIONI
Sede: Via di Vigna Murata, 605 | Roma

Anno 2018_Numero 396t

apporti
tecnici

ISSN 2039-7941

How to cite: Randazzo D., Serpelloni E., Cavaliere A., (2018). PyGLog: a
Python software for handling GNSS metadata and log-files. Rapp. Tec.
INGV, 396: 1-26.

PYGLOG: A PYTHON SOFTWARE FOR
HANDLING GNSS METADATA AND LOG-FILES

Daniele Randazzo1, Enrico Serpelloni1, Adriano Cavaliere2

1INGV (Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti)
2INGV (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna)

Index

Abstract 7	

Key words 7	

Introduction 7	

1. Strategy of data management 8

2. Description of the software 10

2.1 Main software: a scalable multiprocessing structure 10	

2.2 Folder structure 10	

2.3 Configuration files 11	

2.3.1 Common configuration file 11	

2.3.2 GPS network configuration file 11	

2.3.3 Previous status image of the GPS network 11	

2.3.4 The Translation Table 12	

3. Running the main software 13	

4. Extracting information from the Software LogFiles 14	

Considerations 15	

Future developments 15	

Conclusions 15	

Thanks 15	

Sitography 15	

Appendix A: structure of a GNSS log file 16	

Appendix B: the main python code to run the processes and daemons 20	

Appendix C: procedure to fork the parent process into a child process 21	

 7

Abstract

We describe a software developed to handle metadata of Global Navigation Satellite System (GNSS)

stations. The number of available GNSS sites in the Euro-Mediterranean and African area has grown
significantly in the last decade, pushing toward the development of automatic procedures for the analysis of
the raw observations. Currently >3000 stations are routinely processed at the GPS data analysis center based
on the GAMIT/GLOBK software operating at INGV-Bologna. Here we describe a software, written in
Python, developed with the goal of processing metadata associated with continuously operating GNSS
stations. The metadata is, generally, an ASCII file associated with each station, containing information about
the geodetic antenna, the receiver, the radome model and the antenna offset (distance between the phase
center of the antenna and the reference point, depending on the mechanical structure of the antenna mount).
Commonly, but not always, GNSS stations metadata are provided in the form of log-files, which are however
most of time compiled by human operators and later made available on the web for public access. On the
research side these metadata are fundamental for a proper data processing and an accurate estimate of
geophysical information, and need to be converted in a particular standard format (station info file),
depending on the software adopted for data reduction, with coherent information to not stall the elaboration.
The check of metadata coming from a huge amount of GNSS stations from different networks is a time
consuming task, which compromises the efficiency of the research job. The software presented in this work
aims at automatically update the repository of thousands of station metadata files, checking the coherence of
the information and creating the station info files, in different formats, needed for processing, thus requiring
a minimum effort for data processing to the operators.

Key words

Global Navigation Satellite System, Global Positioning System (GPS) – Continuous GPS (CGPS) – station
info – log file – metadata – offset – repository – data processing – station-info.

Introduction

The “PyGLog” software is intended to automatically retrieve the log files (metadata) from different

GNSS networks servers, to keep the local repository updated, to properly interpret the information contained
in the original log-files, to compare new and old log files and to create the station-info files in different
formats, compatible with most common geodetic-level software tools, limiting the occurrence of errors due
to human interaction on the metadata. The software also creates a specific log file associated to the GNSS
network, in order to save the information about the status of elaborated stations; this file is sent, via email, to
alert the operator whenever an error occur.

In order to allow the software to manage different GPS networks, the following issues have been
faced:

• The GNSS network data and metadata are provided on the web either through FTP server
connection or through dynamic link with an HTTP server. While the first provides direct access to
the files and related information, the HTTP protocol generally provides a not standard web page,
requiring to parse the HTML code in order to find the link and other information. To properly
detect the new and old log-file, it’s relevant to know and compare the “timestamp” of the file,
which is the date and time of its creation; when it’s not available, the current time is used.

• Some Data Repository uses UNAVCO’s GSAC software (https://www.unavco.org/software/data-
management/gsac/gsac.html) for data search and downloads. In this case only the GAMIT format
station.info and SINEX files are available and a different approach is required to retrieve the
metadata.

• Some Repository provides log-file in compressed format, to unzip before processing.
• The filenames do not have a standard format and often the timestamp is not included.
• Most of the web servers provide the filename in the format “ssss_yyyymmdd” (“s” = station_id,

“y” = year, “m” = month and “d” = day) but it’s also possible to find multiple files with the same
station_id and different dates, requiring to select only the newest one from the source.

• Inside the station log-file the parameters are described by the “field name” and are grouped into sub

 8

paragraphs as shown in Appendix A; Although rare, not all of the files are provided in English
language, requiring thus to interpret the fields.

• The information inside the log-files such as the date-time format, the antenna, the receiver and
radome model often does not match the expected format or code.

• The need to process a scalable number of GNSS networks.
• The need to recognize new available potential interesting stations falling inside the region of

interest.

This technical report describes the strategy used to reach these goals using Python, which is a cross-

platform, open source and object-oriented programming language but, as explained in paragraph 3, actually
it’s launched by a bash script that makes it executable only on Linux. This software code has been developed
on Ubuntu using the “PyCharm Community” smart editor which is a free, open source and lightweight IDE
for Python & Scientific Development by JetBrains (downloadable from the link:

https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=linux&code=PCC)

To understand the kind of elaboration performed by the software, it’s interesting to observe in

Appendix A how a typical GNSS log file appears.

1. Strategy of data management

The “PyGLog” software is developed to manage the GNSS networks as a list of independent objects

running in background as sub-processes, each of which with a different working directory, different
configuration file and output directory. For this reason, here we will describe a single sub process associated
to a network, which has the same principle used by all sub processes; Figure 1 shows the flowchart of the
software in order to explain the sequence of operations.

As in the flowchart, the software loads the GNSS network configuration then according to the
timetable, iterate through the loop. The available information are loaded into reference arrays, then the
process compares the timestamp of the new station log-files from the web with the old one in the local
repository: the new files belonging to the NetList (white list) are downloaded into a dedicated folder and are
compared, field by field with the old one in order to find and report the differences. The files not in the
NetList are considered as new “GPS station’s log-files”, they are downloaded directly into the repository but
the process also checks for the coordinates of each GPS station, reporting when they fall inside a pre-defined
area of interest. The most important part of the process is the elaboration to create the StationInfo files: to
validate the data are performed multiple checks:

• The field names are interpreted according to the language, then the parameters are loaded into a
structured array (defined as object).

• Date-time properly retrieved: the software is able to interpret different date-time formats, providing
a large flexibility of interpretation.

• Period alignment check: reports when the date-time of installation are not consecutive in the
paragraphs of the Antenna or the Receiver, avoiding or limiting possible errors which cause the
process to stop.

• Check the GPS antenna, the Receiver and Antenna Radome codes: the software retrieves the codes
from the log-file and looks for a match in the reference file list, which is the receiver/antenna file
provided by IGS: ftp://igs.org/pub/station/general/rcvr_ant.tab. This file details naming
conventions for IGS equipment descriptions in GNSS site logs, RINEX headers and SINEX. When
no match is found the software uses a “Translation Table” which is an ASCII file where all the
non-standard codes and the equivalent correct ones are saved. This guarantee that the StationInfo
files will contain only IGS standard codes for the antennas, receivers and radomes. The Translation
Table file is edited either by the software and by the operator (see par. 2.3.4) and helps in
automatically handling persisting errors in log-files where non-IGS standard codes are used and
where the networks managers do not apply the requested changes to the original log-files.

After the fields of the log files have been verified, if all the information are properly interpreted the

software creates the Station-Info file which is a formatted ASCII file, containing the main information of the
GPS station required by different geodetic software (mainly GAMIT/GLOBK, GIPSY and BERNESE), with

 9

as many rows as the periods, ready to be processed. Figure 2 shows a typical GAMIT/GLOBK Station-Info
file, where each column reports the following information:

• “*SITE”: Station Id, the unique name used to identify the station
• “Station Name”: the real name of the station, based on the location
• “Session Start”: the beginning of a period, with the year, the Julian day and the time. A new period

is defined every time a change occurs in any of the GPS parameters
• “Session End”: the end of the period. When the period refers to the present, the end date is

indicated with the year “9999”
• “Ant Ht”, “HtCod”, “Ant N” and “Ant E”: antenna parameters
• “Receiver Type”, “Vers”, “SwVer” and “Receiver SN”: receiver parameters
• “Antenna Type”, “Dome” and “Antenna SN”: Antenna and Duomo parameters

The flowchart in Figure 1 completes with service duties as deleting the old files, sending the report

emails and waiting for the next timetable schedule.

Figure 1. Flow chart of a single process to create the Station-Info files.

 10

Figure 2. Part of a station-info ASCII file.

2. Description of the software

2.1 Main software: a scalable multiprocessing structure

The main software has been optimized to run several simultaneous processes, working continuously in
background as “daemon”. This particular kind of process is detached from the terminal, does not need to
interact with the operator, works with the minimum CPU load and is not killed by the OS when the terminal
is closed, even though it’s always listening the OS signals. At the beginning the main process loads from file
the “common configurations”, including the list of the GNSS networks to analyze, and creates the sub
processes. Each sub-process loads from file the specific parameters, including the link to download the
related log-file and, according to the scheduled time, performs the checks and comparisons described in the
flowchart, updates the local repository and creates the station-info files. Appendix B and C show how the sub
processes are created.

2.2 Folder structure

The main folder is named “CGPSmetadata” and the structure is shown below in a convenient sort:

v CGPSmetadata
Ø SRC
Ø Configurations
Ø DBfile
Ø TransTable
Ø DatiNet

§ GPS “NETWORK”
• _FtpNewLog
• _Log_Repo
• _STF_Repo

Ø LogMail_OLD
Ø virtualenvCGPS

The “SRC” folder contains the source Python code; the code is broken in different files with extension

“.py”. In the same folder the ASCII file “CGPSmetadata.cfg” is used to initialize the main software with the
common parameter for all sub-processes. The “Configurations” folder stores the ASCII files with the
configurations for each GNSS network. The “DBfile” folder stores the files to keep track of the last status of
the GPS networks. The “TransTable” folder stores the files used by the software as interface with the
operator. All the above configuration files are described in Section. 2.3.

The working folder “DatiNet” collects and groups in sub-folders all the output files produced by the
network processes. Inside each network folder, in the “_FtpNewLog” sub-folder the new log-files are
downloaded, the “_Log_Repo” folder is the log-file repository while the “_STF_Repo” is the target folder
where the station-info files are created.

The “LogMail_OLD” folder keeps the log-files produced by all processes: these files are used to
report errors and service informations and are sent by email to alert the user. This folder is also used as
garbage-collector because it keeps also the old dismissed GPS log-files, which are currently deleted by the
software after 30 days. In section 4. is described a typical log-file of the software.

 11

The “virtualenvCGPS” folder is the virtualized python environment, with specific libraries used by the
software: the virtual environment allows to install specific libraries, with no modification of the standard
python installed at system level. Currently are installed the “pyproj” library to allow the coordinate
conversion and the “requests” library to unzip files.

2.3 Configuration files

The operator generally interacts with this software by editing the configuration files, which are simple
ASCII text files, used to set the global or the specific parameters of the GNSS networks. While running, each
process initializes with these parameters and begins the sequence of operations leading to the creation of the
StationInfo file. Following we provide an explanation of these files.

2.3.1 Common configuration file

This file includes the following parameters:
• The list of GNSS networks to be elaborated.
• The main working folder.
• The range of coordinates, Longitude and Latitude in WGS84 format, to verify whether the

stations fall in the area of interest, to detect new available stations.
• The Boolean flag to enable the email alert: each process sends its log-file with the report of

errors and information about the elaboration to create the StationInfo files.
• The scheduled day of the week and time to run the process.

Section 4 describes how to extract the information from the report log-file, to have a full picture of the

elaboration. This configuration file is designed to give flexibility in entering parameters, the software
recognizes the specific keywords even changing the field’s order. In the same file it is possible to comment a
row, or part of it, by using the hash character “#”.

2.3.2 GPS network configuration file

The configuration files related to the specific GNSS network include parameters such as the link and
credential to connect the web server, in order to download the GPS log-files. The software interprets either
the FTP or HTTP connection based on the link and gives the possibility to set the Boolean flag “gsac” to
download the station info files based on GSAC, the UNAVCO’s Geodesy Seamless Archive Centers
software system, which powers geodesy data repositories with specific web services
(https://www.unavco.org/software/data-management/gsac/gsac.html). Once the parameters are set, the
software behaves in different ways based on the kind of connection: it is worth remembering that while the
FTP servers allow to manage the files for a standard connection, the HTTP servers show a web page made by
human and it is necessary to parse the html code in order to retrieve the file information (when available).

2.3.3 Previous status image of the GPS network.

In order to detect a new GNSS log-file from the web server, it is necessary to obtain the information
about the timestamp of the last retrieved one in the log-file repository. In the “DBfile” folder the files
containing the previous status image of each GPS network are stored. Comparing these information with the
new status updated from the web, it is possible to detect the new files to download. Figure 3 shows an
example of DBfile: each row represents a single GPS station of the network with the timestamp of the last
download.

Figure 3. Example of “_fDB” file, representing the last status image of the web server.

 12

The following Table 1 shows the meaning of each column:

Column N° Brief Description Description
1 File name (lower case) allows to univocal compare the file names, even though

they are duplicated with different cases
2 File name (original case) associated with the original filename, used to retrieve the

file from the server
3 Time stamp is compared with the correspondent one from the server.

When the timestamp is not provided by the web server,
then it is automatically set to the current time

4 Link to http server link to download the html file

Table 1. list of information from the GPS station log-files.

In the DBfile these information are separated by a <TAB> character, represented by an “arrow” as

drawn in the text editor in the figure.

2.3.4 The Translation Table
During the process to create the StationInfo file, the software checks for the coherence of each field in

the log-file. In particular it attempts to verify the GPS Antenna, Receiver and Radome codes with respect to
standard IGS codes, which are listed in the “rcvr_ant.tab” and daily updated from the following link:
https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab. Additionally, the software uses the
GAMIT/GLOBK specific files “rcvant.dat” and “antmod.dat” as reference tables. The file “rcvant.dat”
includes all antennas and receivers supported by the software and the “rcvr_ant.tab” includes antenna phase
center models. It is worth noting that equivalent files are available for other geodetic software (GIPSY and
BERNESE). Checking whether the receiver, antenna or radome listed in a Log-file are supported by the
processing software allows to avoid fatal errors in the processing; Importantly, the choice that if a specific
antenna-radome couple is not found in the phase center model file, the software automatically sets the
radome field to “NONE” in the StationInfo file, in order to not stall the elaboration.

Because the GNSS log-file is often edited by human operators, sometime the entries used do not match
the values in the reference tables due to human errors; in this case the software searches inside the translation
table, which is an ASCII file with three paragraphs:
• “ANTCODE” refers to the antenna model;
• “RCVCODE” refers to the GNSS receiver model;
• “DOMECODE” refers to the antenna radome model.

If the correct code is found, the software automatically uses it to elaborate the station-info file, otherwise it
adds a new row in the proper paragraph, with the “fake” code in the first column and the “???” symbol in the
second; the operator is then alerted by email to edit the translation table file and to indicate the correct code.
Sometime it’s useful to ignore the request for ambiguous radome model, in this case the operator adds the
“#” char. All the translation table files are stored into the “TransTable” folder; the following Figure 4 shows
a real case of translation table:

 13

Figure 4. Translation Table.

This strategy gives flexibility in the log-file elaboration, giving the autonomy to interpret human errors

and allowing to generate correct (in the sense of avoiding software stops and fatal errors) station-info files.

3. Running the main software

The “pyGLog.py” software uses specific libraries, included in the associated virtual environment,

which first needs to be activated. In order to facilitate the software execution, the shell script “start.sh” is
created in the main folder. The main software iterates through the list of GPS networks and sequentially runs
all sub-processes with the respective parameters. Below is the terminal with the running subprocesses, the
parent pid (ppid) and the child process id (pid) are shown: it’s interesting to notice that the sequence depends
from the execution time, thus they are not sorted in the ascending order.

un@pc:/opt/CGPSmetadata$./start.sh
process 1 = GREF ppid= 1672 pid= 7042
process 2 = SONEL ppid= 1672 pid= 7045
process 3 = ERVA ppid= 1672 pid= 7048
process 4 = ITACYL ppid= 1672 pid= 7053
process 0 = EUREF ppid= 1672 pid= 7039
process 6 = UNAVCO ppid= 1672 pid= 7058
process 5 = CATNET ppid= 1672 pid= 7055
process 8 = VENETO ppid= 1672 pid= 7065
process 7 = RGP ppid= 1672 pid= 7061
process 9 = STPOS ppid= 1672 pid= 7068
process 11 = FREDNET ppid= 1672 pid= 7073
process 10 = CAMPANIA ppid= 1672 pid= 7072

 14

process 15 = REP ppid= 1672 pid= 7086
process 12 = FVG ppid= 1672 pid= 7078
process 13 = GEODAF ppid= 1672 pid= 7080
process 16 = IGNE ppid= 1672 pid= 7088
process 17 = IGS ppid= 1672 pid= 7092
process 18 = RENEP ppid= 1672 pid= 7095
process 19 = RGAN ppid= 1672 pid= 7098
process 14 = RING ppid= 1672 pid= 7083
process 20 = GNSSPIEMONTE ppid= 1672 pid= 7101
process 22 = SEGAL ppid= 1672 pid= 7106
process 21 = NIGNET ppid= 1672 pid= 7103
process 23 = ALBANIA ppid= 1672 pid= 7109
process 24 = RAP ppid= 1672 pid= 7112

To stop all the processes at once the shell script “stop.sh” was created in the main folder, which sends

the kill message to each subprocess.

4. Extracting information from the Software LogFiles

While running each subprocess keeps track of useful information such as the server link, the run time,

the number of log-files in the local repository and on the server side, the comparison between new and old
stations log-files, the number of StationInfo files created and, importantly, gives information about errors
during execution.

The log-files produced by the software of all the GPS networks are collected in the same
“LogMail_OLD” folder and the filename includes the timestamp and network name, allowing to easily filter
the files.

Using the Linux terminal commands from this folder with the appropriate “keywords”, it is possible to
extract the main information from these files; follows a table with examples with the main usage of terminal
commands:

$ cat 2017-09-06_*.log Shows the logs produced by all the network in a

specific date
$ grep "STF files:" 2017-09-06*.log Shows the network name and the number of

produced “Station-Info” files. Useful for diagnosis
$ grep "AREA" 2017-09-06*.log Shows the network name and new potential GPS

stations, falling in the area of interest
$ grep "Compare" 2017-09-06_*.log Shows the network and GPS station name with

changes in the metadata
$ grep "not found" 2017-09*.log Shows the network and the number of GPS station

not found
$ grep “NO Log” 2017-09-06_*.log Shows empty logs
$ grep "Error" 2017-09-06_*.log Shows generic Errors. Useful for diagnosis
$ grep "Update TransTable" 2017-09*.log Shows which Translation Tables need updates

Starting from these information it is easy and fast to investigate the status of the processed networks.

 15

Considerations

This software is currently running on the INGV-Bologna GPS data processing server and the

StationInfo output files have been tested for errors with the GAMIT/GLOCK software, passing with success.
The software is still under development and even though some change could occur on the procedures, the
given scalable structure allows to keep the choices at the base of the project. The strength of this code is that
the information coming from different sources, are grouped and converted in the same type of structured
arrays, which allow to use generalized procedures for elaboration. The idea to validate the data through
reference tables and translation tables gives flexibility, allowing to process the data even in presence of
human errors in the GPS station log-file.

Future developments

Developing this software and facing different issues, has suggested the following considerations to

improve the usage of this work:
• It’s possible to add a procedure in the parent process which oversees all the child processes and

alerts when a sub process stops or gives error and does not produces the expected StationInfo
files.

• The usage of this software could be extended to other OS, as the same Python philosophy
suggests.

Conclusions

The software turned out in a valid support to check a massive amount of GPS metadata, to quickly

convert in station info files and to further elaborate the GPS data avoiding to stall the analysis. This translates
into an advantage for the researcher who can devote himself to other more important aspects of his work.

Thanks

This work has been possible thanks to the close collaboration with the geodesy group operating in

Bologna, which saw the possibility of optimizing its work by entrusting routine work to a process that,
though quick and automated, is possible to be verified. Thanks especially to the colleagues for providing the
specifications of implementation and supporting me along the entire software development path.

Sitography

https://www.python.org/
https://stackoverflow.com/
https://github.com/serverdensity/python-daemon/blob/master/daemon.py
https://github.com/
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=linux&code=PCC
http://www.jejik.com/articles/2007/02/a_simple_unix_linux_daemon_in_python/
http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16
https://www.unavco.org/software/data-management/gsac/gsac.html

 16

Appendix A: structure of a GNSS log file

Follows an example of a typical well-structured GNSS log file, where the structure in sub-paragraphs highlights the
historical parameter changes:

 ACOR Site Information Form (site log)
 International GNSS Service
 See Instructions at:
 ftp://igscb.jpl.nasa.gov/pub/station/general/sitelog_instr.txt

0. Form

 Prepared by (full name) : Pedro Gonzalo Lopez
 Date Prepared : 2014-09-15
 Report Type : UPDATE
 If Update:
 Previous Site Log : acor_20121212.log
 Modified/Added Sections : 11

1. Site Identification of the GNSS Monument

 Site Name : A Coruna
 Four Character ID : ACOR
 Monument Inscription : None
 IERS DOMES Number : 13434M001
 CDP Number : 2101
 Monument Description : STEEL MAST
 Height of the Monument : 3 m
 Monument Foundation : CONCRETE BLOCK
 Foundation Depth : 2 m
 Marker Description : BRASS PLATE
 Date Installed : 1998-03-06T10:10Z
 Geologic Characteristic : CONGLOMERATE
 Bedrock Type : IGNEOUS
 Bedrock Condition : WEATHERED
 Fracture Spacing : (0 cm/1-10 cm/11-50 cm/51-200 cm/over 200 cm)
 Fault zones nearby : NO
 Distance/activity : (multiple lines)
 Additional Information : Station located in the tide gauge of
 : A Coruna

2. Site Location Information

 City or Town : A Coruna
 State or Province : A Coruna
 Country : Spain
 Tectonic Plate : EURASIAN
 Approximate Position (ITRF)
 X coordinate (m) : 4594489.939
 Y coordinate (m) : -678368.073
 Z coordinate (m) : 4357065.900
 Latitude (N is +) : +432151.77
 Longitude (E is +) : -0082356.17
 Elevation (m,ellips.) : 67.0
 Additional Information : ACOR is a reference point of the Spanish
 : GPS Fiducial Network raised by the
 : Instituto Geografico Nacional

3. GNSS Receiver Information

3.1 Receiver Type : ASHTECH UZ-12
 Satellite System : GPS
 Serial Number : 00224
 Firmware Version : UE00-0A12
 Elevation Cutoff Setting : 0 deg
 Date Installed : 1998-12-06T10:10Z
 Date Removed : 2001-12-19
 Temperature Stabiliz. : (deg C) +/- (deg C)
 Additional Information : (multiple lines)

3.x Receiver Type : (A20, from rcvr_ant.tab; see instructions)
 Satellite System : (GPS+GLO+GAL+BDS+QZSS+SBAS)
 Serial Number : (A20, but note the last A5 is used in SINEX)
 Firmware Version : (A11)
 Elevation Cutoff Setting : (deg)
 Date Installed : (CCYY-MM-DDThh:mmZ)

 17

 Date Removed : (CCYY-MM-DDThh:mmZ)
 Temperature Stabiliz. : (none or tolerance in degrees C)
 Additional Information : (multiple lines)

4. GNSS Antenna Information

4.1 Antenna Type : ASH700936D_M SNOW
 Serial Number : 16122
 Antenna Reference Point : BPA
 Marker->ARP Up Ecc. (m) : 3.0420
 Marker->ARP North Ecc(m) : 0.0000
 Marker->ARP East Ecc(m) : 0.0000
 Alignment from True N : 0 deg
 Antenna Radome Type : SNOW
 Radome Serial Number :
 Antenna Cable Type : (vendor & type number)
 Antenna Cable Length : 30 m
 Date Installed : 1998-12-06T10:10Z
 Date Removed : 2007-03-17T23:59Z
 Additional Information : New antenna denomination; no physical
 : change

4.x Antenna Type : (A20, from rcvr_ant.tab; see instructions)
 Serial Number : (A*, but note the last A5 is used in SINEX)
 Antenna Reference Point : (BPA/BCR/XXX from "antenna.gra"; see instr.)
 Marker->ARP Up Ecc. (m) : (F8.4)
 Marker->ARP North Ecc(m) : (F8.4)
 Marker->ARP East Ecc(m) : (F8.4)
 Alignment from True N : (deg; + is clockwise/east)
 Antenna Radome Type : (A4 from rcvr_ant.tab; see instructions)
 Radome Serial Number :
 Antenna Cable Type : (vendor & type number)
 Antenna Cable Length : (m)
 Date Installed : (CCYY-MM-DDThh:mmZ)
 Date Removed : (CCYY-MM-DDThh:mmZ)
 Additional Information : (multiple lines)

5. Surveyed Local Ties

5.x Tied Marker Name :
 Tied Marker Usage : (SLR/VLBI/LOCAL CONTROL/FOOTPRINT/etc)
 Tied Marker CDP Number : (A4)
 Tied Marker DOMES Number : (A9)
 Differential Components from GNSS Marker to the tied monument (ITRS)
 dx (m) : (m)
 dy (m) : (m)
 dz (m) : (m)
 Accuracy (mm) : (mm)
 Survey method : (GPS CAMPAIGN/TRILATERATION/TRIANGULATION/etc)
 Date Measured : (CCYY-MM-DDThh:mmZ)
 Additional Information : (multiple lines)

6. Frequency Standard

6.1 Standard Type : INTERNAL
 Input Frequency : (if external)
 Effective Dates : 1998-12-06/CCYY-MM-DD
 Notes : (multiple lines)

6.x Standard Type : (INTERNAL or EXTERNAL H-MASER/CESIUM/etc)
 Input Frequency : (if external)
 Effective Dates : (CCYY-MM-DD/CCYY-MM-DD)
 Notes : (multiple lines)

7. Collocation Information

7.1 Instrumentation Type : TIDE GAUGE
 Status : PERMANENT
 Effective Dates : 1955-01-15/CCYY-MM-DD
 Notes : Sensor Model : THALIMEDES
 : Manufacturer : AOTT
 : Data Frequency : 10 min
 : Accuracy (mm) : 1 mm

7.x Instrumentation Type : (GPS/GLONASS/DORIS/PRARE/SLR/VLBI/TIME/etc)
 Status : (PERMANENT/MOBILE)

 18

 Effective Dates : (CCYY-MM-DD/CCYY-MM-DD)
 Notes : (multiple lines)

8. Meteorological Instrumentation

8.1.x Humidity Sensor Model :
 Manufacturer :
 Serial Number :
 Data Sampling Interval : (sec)
 Accuracy (% rel h) : (% rel h)
 Aspiration : (UNASPIRATED/NATURAL/FAN/etc)
 Height Diff to Ant : (m)
 Calibration date : (CCYY-MM-DD)
 Effective Dates : (CCYY-MM-DD/CCYY-MM-DD)
 Notes : (multiple lines)

8.2.x Pressure Sensor Model :
 Manufacturer :
 Serial Number :
 Data Sampling Interval : (sec)
 Accuracy : (hPa)
 Height Diff to Ant : (m)
 Calibration date : (CCYY-MM-DD)
 Effective Dates : (CCYY-MM-DD/CCYY-MM-DD)
 Notes : (multiple lines)

8.3.x Temp. Sensor Model :
 Manufacturer :
 Serial Number :
 Data Sampling Interval : (sec)
 Accuracy : (deg C)
 Aspiration : (UNASPIRATED/NATURAL/FAN/etc)
 Height Diff to Ant : (m)
 Calibration date : (CCYY-MM-DD)
 Effective Dates : (CCYY-MM-DD/CCYY-MM-DD)
 Notes : (multiple lines)

8.4.x Water Vapor Radiometer :
 Manufacturer :
 Serial Number :
 Distance to Antenna : (m)
 Height Diff to Ant : (m)
 Calibration date : (CCYY-MM-DD)
 Effective Dates : (CCYY-MM-DD/CCYY-MM-DD)
 Notes : (multiple lines)

8.5.x Other Instrumentation : (multiple lines)

9. Local Ongoing Conditions Possibly Affecting Computed Position

9.1.x Radio Interferences : (TV/CELL PHONE ANTENNA/RADAR/etc)
 Observed Degradations : (SN RATIO/DATA GAPS/etc)
 Effective Dates : (CCYY-MM-DD/CCYY-MM-DD)
 Additional Information : (multiple lines)

9.2.x Multipath Sources : (METAL ROOF/DOME/VLBI ANTENNA/etc)
 Effective Dates : (CCYY-MM-DD/CCYY-MM-DD)
 Additional Information : (multiple lines)

9.3.x Signal Obstructions : (TREES/BUILDINGS/etc)
 Effective Dates : (CCYY-MM-DD/CCYY-MM-DD)
 Additional Information : (multiple lines)

10. Local Episodic Effects Possibly Affecting Data Quality

10.x Date : (CCYY-MM-DD/CCYY-MM-DD)
 Event : (TREE CLEARING/CONSTRUCTION/etc)

11. On-Site, Point of Contact Agency Information

 Agency : Instituto Geografico Nacional
 Preferred Abbreviation : IGN-E
 Mailing Address : C/ General Ibanez Ibero, 3
 : E-28003 MADRID

 19

 : SPAIN
 Primary Contact
 Contact Name : Pedro Gonzalo Lopez
 Telephone (primary) : +34 91 597 9625
 Telephone (secondary) : +34 91 597 9562
 Fax : +34 91 597 9616
 E-mail : pgonzalo@fomento.es
 Secondary Contact
 Contact Name : Jose A. Sanchez Sobrino
 Telephone (primary) : +34 91 597 9428
 Telephone (secondary) : +34 91 597 9562
 Fax : +34 91 597 9616
 E-mail : jassobrino@fomento.es
 Additional Information : (multiple lines)

12. Responsible Agency (if different from 11.)

 Agency : (multiple lines)
 Preferred Abbreviation : (A10)
 Mailing Address : (multiple lines)
 Primary Contact
 Contact Name :
 Telephone (primary) :
 Telephone (secondary) :
 Fax :
 E-mail :
 Secondary Contact
 Contact Name :
 Telephone (primary) :
 Telephone (secondary) :
 Fax :
 E-mail :
 Additional Information : (multiple lines)

13. More Information

 Primary Data Center : BKGE
 Secondary Data Center : OLG
 URL for More Information : http://www.epncb.oma.be/info/ACOR.html
 Hardcopy on File
 Site Map : (Y or URL)
 Site Diagram : (Y or URL)
 Horizon Mask : (Y or URL)
 Monument Description : (Y or URL)
 Site Pictures : (Y or URL)
 Additional Information : (multiple lines)
 Antenna Graphics with Dimensions

LEIAT504

 +-------+ <-- 0.1393
 / + \ <-- 0.1282 L2
 | + | <-- 0.1093 L1
 +-----------------+-------------+------------------+ <-- 0.1020 TCR
 | |
 | |
 | |
 | |
 +-+--+-+ <-- 0.0380
 +-------------------+-------------+--------------------+ <-- 0.1020 BCR
 | |
 | |
 +------x------+ <-- 0.0000 BPA=ARP

 <-- 0.3794 -->

 ARP: Antenna Reference Point
 L1 : L1 Phase Center L2 : L2 Phase Center
 TCR: Top of Chokering BCR: Bottom of Chokering

 20

Appendix B: the main python code to run the processes and daemons

The strength of this software is its ability to run several independent processes, using a set of common

parameters which, together with the specific one, lead to the data elaboration. Here is shown the structure of
the main code that could be useful for further applications.

As shown below the first process is named “CreaProcessi(Avvio)”: it initializes with the common
configurations and then iterates through the list of networks to run different processes. Each process creates a
daemon by running the procedure “CreaDemone(nNET, CGPSconf, Avvio)”, which uses the “Daemon”
class to fork the parent process. The new created process overrides the “run(self)” procedure in the class
“daemEPOS(Daemon)”, which performs all the elaboration as child process, with the specific parameters
retrieved by the number “nNET” given by the “for loop” iteration. Follows a schema of the structure of the
source code:

#--
if __name__ == "__main__":
if len(sys.argv) == 2:
 if 'start' == sys.argv[1]:
 CreaProcessi(True)
 elif 'stop' == sys.argv[1]:
 CreaProcessi(False)
#---------------------------
 def CreaProcessi(Avvio): # Create processes associated to daemons
 CGPSconf = CGPSconfigurazioni() # Initialization of Common Configuration
 for nNET, NET in enumerate(CGPSconf.NETar): # Iterate to create the processes
 p = Process(target=CreaDemone, args=(nNET, CGPSconf, Avvio)) # Each process
 p.start() # runs a daemon
 p.join()

 def CreaDemone(nNET, CGPSconf, Avvio): # Daemon creation
 daemon = daemEPOS(nNET, CGPSconf)
#--
class daemEPOS(Daemon): # The class “Daemon” is shown in Appendix “C”
 def __init__(self, nNET, CGPSconf): # it creates processes using common parameters
 self.nNET = nNET
 self.CGPSconf = CGPSconf
 self.pidfile = '/tmp/daemon_' + self.NET + '.pid'

 def run(self): # procedure “Overridden” by the daemon
 [Initialization]
 while True: # Loop to run according the time table
 [elaboration] # Procedure to check GPS Log-Files and
 # to create station-info files

 21

Appendix C: procedure to fork the parent process into a child process

In order to “demonize” a process the main class uses a second class named "Daemon" included in the

"daemon.py" file: this code is responsible for twinning the parent process into child processes on which to
run the "run(self)" procedure; this procedure is then overridden in the main class, where it runs in
background creating the station-info files. The code used to create daemons was inspired from internet
documentations, follows a portion of the code:

#!/usr/bin/env python
http://www.jejik.com/articles/2007/02/a_simple_unix_linux_daemon_in_python/
http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16

import sys, os, time, atexit
from signal import SIGTERM

class Daemon:
A generic daemon class.
Usage: subclass the Daemon class and override the run() method
#-----------------------------
 def __init__(self, nNET, CGPSconf):
 pass # take the parameters from class daemEPOS(Daemon):

 def daemonize(self):
 try:
 pid = os.fork()
 if pid > 0:
 # exit first parent
 sys.exit(0)
 except OSError, e:
 sys.stderr.write("fork #1 failed: %d (%s)\n" % (e.errno, e.strerror))
 sys.exit(1)
 # decouple from parent environment
 os.setsid()
 os.umask(0)

 # do second fork
 try:
 pid = os.fork()
 if pid > 0:
 # exit from second parent
 sys.exit(0)
 except OSError, e:
 sys.stderr.write("fork #2 failed: %d (%s)\n" % (e.errno, e.strerror))
 sys.exit(1)
 #--
 # write pidfile
 atexit.register(self.delpid)
 pid = str(os.getpid())
 try:
 file(self.pidfile, 'w+').write("%s\t%s\n" %(pid, self.NET))
 except IOError, e:
 print ('Errore pidfile: %d (%s)' % (IOError,e))

 def delpid(self):
 os.remove(self.pidfile)

 def start(self): # Start the daemon
 # Check for a pidfile to see if the daemon already runs
 try:
 pf = file(self.pidfile, 'r')
 pid = int(pf.read().split('\t')[0])
 pf.close()
 except IOError:
 pid = None

 if pid:
 message = "pidfile %s already exist. Daemon already running.\n"

 22

 sys.stderr.write(message % self.pidfile)
 sys.exit(1)

 # Start the daemon
 self.daemonize()
 self.run()

 def stop(self): # Stop the daemon
 # Get the pid from the pidfile
 try:
 pf = file(self.pidfile, 'r')
 pid = int(pf.read().split('\t')[0])
 pf.close()
 except IOError:
 pid = None

 if not pid:
 message = "pidfile %s does not exist. Daemon not running.\n"
 sys.stderr.write(message % self.pidfile)
 return # not an error in a restart

 # Try killing the daemon process
 try:
 while 1:
 os.kill(pid, SIGTERM)
 time.sleep(0.1)
 except OSError, err:
 err = str(err)
 if err.find("No such process") > 0:
 if os.path.exists(self.pidfile):
 os.remove(self.pidfile)
 else:
 print str(err)
 sys.exit(1)

 def restart(self): # Restart the daemon
 self.stop()
 self.start()

 def run(self):
 # override this method when you subclass Daemon.
 # It will be called after the process has been daemonized by start() or

restart().

ISSN 1590-2595

ISSN 2039-7941

I Quaderni di Geofisica coprono tutti i campi disciplinari sviluppati all'interno dell'INGV,
dando particolare risalto alla pubblicazione di dati, misure, osservazioni e loro elaborazioni
anche preliminari, che per tipologia e dettaglio necessitano di una rapida diffusione nella
comunità scientifica nazionale ed internazionale. La pubblicazione on-line fornisce accesso
immediato a tutti i possibili utenti. L’Editorial Board multidisciplinare garantisce i requisiti
di qualità per la pubblicazione dei contributi.

ISSN 2039-6651

La collana Miscellanea INGV nasce con l'intento di favorire la pubblicazione di contributi
scientif ici riguardanti le attività svolte dall'INGV (sismologia, vulcanologia, geologia,
geomagnetismo, geochimica, aeronomia e innovazione tecnologica). In particolare, la
collana Miscellanea INGV raccoglie reports di progetti scientifici, proceedings di convegni,
manuali, monografie di rilevante interesse, raccolte di articoli, ecc.

I Rapporti Tecnici INGV pubblicano contributi, sia in italiano che in inglese, di tipo tecnologico
e di rilevante interesse tecnico-scientifico per gli ambiti disciplinari propri dell'INGV. La
collana Rapporti Tecnici INGV pubblica esclusivamente on-line per garantire agli autori rapidità
di diffusione e agli utenti accesso immediato ai dati pubblicati. L’Editorial Board
multidisciplinare garantisce i requisiti di qualità per la pubblicazione dei contributi.

Quaderni di

apporti
tecnici

miscellanea
INGV

http://istituto.ingv.it/it/le-collane-editoriali-ingv/quaderni-di-geofisica.html

http://istituto.ingv.it/it/le-collane-editoriali-ingv/rapporti-tecnici-ingv.html

http://istituto.ingv.it/it/le-collane-editoriali-ingv/miscellanea-ingv.html

Coordinamento editoriale e impaginazione
Centro Editoriale Nazionale | INGV

Progetto grafico e redazionale
Daniela Riposati | Laboratorio Grafica e Immagini | INGV

© 2018 INGV Istituto Nazionale di Geofisica e Vulcanologia
Via di Vigna Murata, 605

00143 Roma
Tel. +39 06518601 Fax +39 065041181

http://www.ingv.it

Istituto Nazionale di Geofisica e Vulcanologia

	Pagina vuota
	Pagina vuota

