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Abstract 
 
GALES is a general­purpose multiphysics finite element software developed at INGV Pisa, and it 
consists of various solvers for computational fluid dynamics (CFD), computational solid dynamics 
(CSD) and fluid­solid interaction (FSI). The software has been verified and validated on several 
benchmarks. The software is intended to be used for high­performance computing (HPC) on 
cluster machines and has been in regular use to study 2D volcanology problems such as magma 
transport and rock deformation. Recently, the numerical code has been extended to 3D. In this 
report, we present the implementation of GALES for a parallel environment and perform a strong 
scaling study on various solvers of GALES for 3D problems. 
 
 
Keywords   Strong­scaling; Parallel computing; Finite element method 
 
 
 
 
Introduction 
 
Computational problems often take a large amount of execution time when solved on a single 
computer. High­performance computing (HPC) is a paradigm where many processors work 
simultaneously to produce exceptional computational power and to significantly reduce the 
total computational time [Flanagan et al., 2020; Dowd and Severance, 2010]. Numerical 
codes are parallelized for the parallel computing in which large problems can often be divided 
into smaller ones, which can then be solved at the same time [Gottlieb et al., 1989; Asanovic 
et al., 2006]. A parallel numerical code is often checked for its performance through a strong­
scaling test i.e. the execution time should reduce by adding more hardware [Blake et al., 
2006; Muller et al., 2015]. In this work, we perform a strong­scaling test on the GALES code. 
The results obtained by this work will provide an indication of the number of resources to 
be requested for the size of a particular job. 
GALES is a multi­physics 2D/3D finite element method (FEM) code developed at INGV­Pisa 
[Longo et al., 2012a; Garg et al., 2018a; Garg et al., 2018b]. The code is written in object­
oriented C++ and is parallelized using OpenMpi for parallel computing on HPC environment. 
GALES deploys massively parallel unstructured, implicit solvers for computational fluid 
dynamics (CFD), solid dynamics (CSD) and fluid­solid/structure interaction (FSI) dynamics 
problems. Although GALES can be used in a wide variety of problems, primarily it was 
developed to study the mixing of multicomponent and multiphase magmas and their 
transportation in the crust [Longo et al., 2006]. FSI solver developed in GALES allows to 
directly link deep magma dynamics in geometrically complex systems to the geophysical 
signals recorded on the Earth’s surface.  
GALES is comprised of mainly three packages: GALES­CFD, GALES­CSD and GALES­FSI. The 
packages include multiple solvers for different kind of problems. 
GALES­CFD contains three solvers: SC­ICO, SC­CO and MC­miscible. SC­ICO and SC­CO 
are, respectively, for the incompressible and compressible flow of a single­component fluid. 
MC­miscible solves for multicomponent miscible compressible and incompressible flows. The 
solvers can be used for transient as well as steady flow problems. To solve the flow problems 
on deforming domains such as free flow and moving boundaries, all the solvers are 
implemented in the arbitrary Lagrangian­Eulerian (ALE) frame of reference [Souli et al., 2001]. 
For fixed domain problems, we solve the problems in the Eulerian setting which is obtained 
by setting mesh velocity equal to zero in the ALE model. Our fluid solvers are based on the 



Galerkin least square based stabilized finite element method [Masud et al., 1997; Tezduyar 
et al., 1992]. Lagrange interpolation functions are used to discretize space and solution 
variables. We use Euler's backward method for temporal discretization. The Navier­Stokes 
equations (conservation of mass, momentum, energy and mass fraction) are solved through 
a monolithic approach [Hauke and Hughes, 1998; Longo et al., 2012a]. 
GALES­CSD include four solvers: ED for elastodynamics, ES for elastostatics, VED for visco­
elastodynamics and VES for visco­elastostatics [Hughes, 1987]. In all solvers, we use the 
standard Galerkin method for the spatial domain and the generalized alpha­method for the 
time discretization [Chung and Hulbert, 1993]. We have implemented several constitutive 
models which include Hooke’s law for an elastic material, Saint­Venant Kirchoff and Neo­
Hookean model for a hyperelastic material [Simo and Hughes, 1998], and generalized 
Maxwell model for visco­elastic materials. 
For FSI problems, we chose a partitioned approach in GALES, which allows us to combine 
any CFD and CSD solvers effortlessly [Schafer et al., 2006]. We use Dirichlet­Neumann 
conditions to establish the kinematic and dynamic equilibrium at the fluid­solid interface 
[Farhat et al., 1998]. A set of classes have been implemented to establish the coupling 
between fluid and solid solvers. 
The code has been applied to flows ranging from validation benchmarks [Garg et al., 2018a; 
Garg et al., 2018b; Longo et al., 2012a] to cases of practical interest [Longo et al., 2012b; 
Papale et al., 2017, Garg et al., 2019, Bagagli et al., 2017]. In this work, we do not provide a 
detailed description of the physical models and mathematical formulations for different 
solvers of GALES. Instead, we present the strong scaling results of solvers for 3D meshes. 
The computations have been performed on the Marenostrum supercomputer in Barcelona 
Supercomputing Centre (BSC) within the project GALES­3D (2010PA5625) in the frame of 
PRACE preparatory access A (https://prace­ri.eu/). 
 
 
1. Computational Hardware 
 
The Marenostrum supercomputer is a Lenovo system composed of 48 SD530 Compute Racks. 
A single rack holds 72 Lenovo stark compute nodes and 2 Lenovo G8282 switches. Each node 
is composed of 48 Intel Xeon Platinum cores. Thus, a single rack contains 3456 cores. The total 
number of computational processors is 165888 and the total memory of the cluster is 384.75 
TB. The current measured Linpack Rmax Performance of the cluster is 6.2272 Petaflops. Within 
a rack, the 3456 computing cores are interconnected through a 100 GB Intel Omni­Path (OPA) 
Full­Fat Tree high­speed interconnection network.  
The different racks are interconnected by a 10 GB Ethernet network. As per MareNostrum user’s 
guide (http://www.bsc.es/support/MareNostrum4­ug.pdf), for PRACE projects, 19200 is the 
maximum number of cores to submit the jobs, out of the total available 165888 cores of the 
cluster. For additional details, we refer the reader to the technical details page of Marenostrum 
(https://www.bsc.es/marenostrum/marenostrum/technical­information). 
 
 
2. Parallel implementation in GALES 
 
All solvers in GALES are implicit and based on the finite element method. In the framework 
of the FEM, computations are carried out at the element level which is well suited for parallel 
computers as the computational load can be well balanced by distributing an almost equal 
number of elements on different processors [Vollaire et al., 1998]. Figure 1 displays a load­
balanced mesh split over four processors. Typically, an implicit FEM solver spends most of 
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its execution time in the following two steps during each non­linear iteration: 
Element level computations and assembly of the linear system of equations 1. 
Solution of the linear system 2. 

 

Either of these steps can be performed in parallel. In the following, we present the details of 
GALES implementation to perform these steps. 
 
 

2.1. Mesh generation 
 
Computational meshes are generated by GMSH, which is a popular open­source widely used 
software [Geuzaine and Remacle, 2009]. The mesh file includes the information on the nodes 
coordinates, element topology, edge connections between nodes and the boundary data. For 
a simple domain geometry (box, sphere, etc.), GMSH is quite fast, taking less than a minute, 
in creating up to several million unstructured tetrahedral elements. However, on complex 
domains for more than 10 million elements, we notice that GMSH takes a significant amount 
of time (of order hours). To read the meshes in GALES we rewrite them in a different format 
using a python script. In the new mesh file, each node is identified with its coordinates and 
the boundary type. Similarly, each element stores the information about its nodes as well as 
an extra tag that classifies if the element lies on the boundary or in the interior of the domain. 

9

Figure 2 A sketch showing mesh partitioned over 4 
processors represented by processor ID (PID) numbers. 
Solid dots indicate the shared nodes among different 
processors. 

Figure 1 Load­balanced mesh partitioning on 4 
processors where each processor shares the same 
number of elements.



2.2 Mesh partitioning 
 
In an HPC environment, typically, the computational mesh is partitioned into multiple parts. Each 
part is assigned to a processor (process) that carries out all the numerical operations corresponding 
to that part of the mesh. In GALES, we use the element based domain partition strategy, in which 
each element is assigned to a unique processor, but nodes can belong to multiple processors if 
they belong to the element lying on the boundary between different sub­domains (we call them 
inter­processor boundary nodes or shared nodes, see Figure 2). By assigning whole elements to 
each processor, we can minimize data dependency during the assembly procedure. To partition 
the mesh on different processors, we use the METIS library, which uses the multilevel heuristic 
graph partitioning approach and assigns an almost equal number of elements to processors [Karypis 
and Kumar, 1999]. That is crucial for load­balancing and the performance of a parallel application. 
The METIS library also minimizes the number of inter­processor boundary nodes, hence reduce 
the amount and the cost of inter­processor communication. Overall computational time is the sum 
of execution and communication times. The execution time is directly proportional to the number 
of partitions and the load­balance on processors. It involves the element level integral 
computations at the Gauss quadrature points and their assembly into a global tangent matrix and 
the right­hand side residual vector. The communication time depends on the number of nodes 
lying on inter­processor boundaries. The partitions coming from METIS are optimal in reducing 
execution as well as communication time. METIS partitions the mesh in serial and is fast up to 
several millions of elements, taking only a few seconds. In this work, we use meshes of up to 50 
million elements. For larger meshes consisting of billions of nodes, METIS may be overwhelmingly 
computationally expensive. In future, we will move to a more optimal library such as ParMETIS 
[Schloegel et al., 2002] (an MPI based parallel extension of METIS) or Zoltan [Boman et al., 2012]. 
 
 

2.3 Element integrals 
 
For the element level computations, we construct vectors and matrices from the boost library. 
The library provides a range of convenient functions for the arithmetic of vectors and matrices. 
Boost library is more convenient to use for the element level computations in the frame of FEM. 
Some of the frequently used operations are matrix­matrix multiplication and matrix­vector 
multiplication, transpose of a matrix and the inverse of a matrix, the norm of a vector and the dot 
product of vectors.  
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Figure 3 Illustration of shared and non­shared maps. In shared map the solid dots indicate that the node is 
included for the map generation. In the non­shared map the solid dots indicate the owner PID of that node 

whereas the hollow ones indicate the non­owner PID.
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2.4 DOFs distribution on processors 
 
The distribution of degrees of freedom (DOFs) across the processors is taken care of by suitable 
mappings. In GALES, we construct maps with the Epetra_Map class 
(https://trilinos.github.io/epetra.html) of the Trilinos library (https://trilinos.github.io/index.html). 
The maps encapsulate the details of distributing data over MPI processors. For a given global id 
(GID) list of the DOFs on processors, an Epetra_Map class object generates a corresponding local 
id (LID) list of the DOFs on each processor which are identified with the corresponding processor 
id (PID). In GALES, we create two different distributed maps that we call shared map and non­
shared map.  
The shared map is based on the element distribution. To construct the map, on each PID, we 
collect the GID list of the DOFs of the nodes of the elements. The GID list also includes the 
DOFs of the nodes that lie on the inter­processor boundaries (see Shared MAP in Figure 3). In 
the shared map an element lying on the inter­processor boundary is entirely independent of its 
neighbouring element that lies on a different PID. Hence, no inter­processor communication is 
needed when we need to extract the DOFs of an element. That is particularly relevant for the 
transient problems as the solution obtained at the previous iteration or at the previous time 
step is often needed in the implicit methods to construct the linear system for the current 
iteration. In GALES, we use the shared map to initialize the vector of DOFs for the application 
problem and use it extensively to carry the solution forward in transient simulations.  
The non­shared map is based on the DOFs of the mesh nodes. Before creating the map each 
node lying on inter­processor boundaries is assigned uniquely to an owner processor. This is to 
ensure that the aggregate of DOFs over owner PIDs is equal to the total DOFs of the 
computation mesh and is independent of the mesh parts. In our implementation, if a node lies 
on the inter­processor boundary then it is assigned to be owned by the processor who has the 
highest PID number (see Non­Shared MAP in Figure 3). The maps themselves are distributed 
and do not store all GIDs on a single processor. This ensures memory scalability because no 
individual processor has to save all the data. 
 
 

2.5 Linear system of equations 
 
In all solvers, FEM discretization results in a linear system of algebraic equations, 𝐴𝑥 = 𝑏 where 𝐴 is the sparse tangent matrix, 𝑥 is the solution vector, and 𝑏 is the non­linear residual vector. 
The dimensions of the linear system are proportional to the number of DOFs of the collective 
mesh. The global sparse matrix 𝐴 and global vectors 𝑏 and 𝑥 are constructed as distributed 
objects whose entries lie across multiple processors. To define them, we use the FE_CrsMatrix 
and FE_Vector classes of the Epetra package. The data entries in FE_CrsMatrix are stored in a 
compressed row format. The FE_CrsMatrix and FE_Vector classes are specially designed for the 
finite element type procedures that allow assembling the element level contributions into the 
global system. The classes automatically handle the details about the data layout, the storage 
format, and the number of the ghost nodes and their corresponding location. The element level 
data can be added to the global linear system through three functions, InsertGlobalValues, 
ReplaceGlobalValues and SumIntoGlobalValues. The objects of the classes are created by passing 
the DOFs distribution described by the non­shared map. In our implementation, we use the 
same data distribution for 𝐴, 𝑥 and 𝑏. For shared DOFs, the data are accumulated locally by 
keeping a copy of the data on the processor. The assembly procedure is completed by calling 
the GlobalAssemble function, which gathers any shared data into the non­overlapping 
partitioning defined by the non­shared map. GlobalAssemble is a collective method that 
reorganizes the data to be classified as off­processor, on­processor and on inter­processor 

11



boundaries. Accordingly, the communication patterns are established to transfer the data from 
a non­owner processor to the owner as specified by the non­shared map. The reorganized data 
structure is further used for the matrix­vector product in the linear solver. To communicate off­
processor data of distributed matrix and vectors, Epetra provides the Import and Export classes. 
By specifying the source and the target map, the content of an object is transferred to a second 
object with a different distribution. The operations of import and export use the gather and 
scatter functions from MPI. GlobalAssemble function implicitly creates the Import/Export objects 
and uses them for off­processor communications. 
 
 

2.6 Linear solver 
 
In GALES, the linear system of equations 𝐴𝑥 = 𝑏 is solved with the GMRES method from the 
Belos package of Trilinos [Bavier et al., 2012] (https://trilinos.github.io/belos.html). GMRES is a 
Krylov subspace­based iterative method that minimizes the residual of the linear system. The 
method is best known for its robustness and efficiency for solving a large and sparse system of 
equations. To generate the GMRES solver, we use the Belos factory class with which any 
available solver can be constructed by passing the solver name at the run time. GMRES solver 
requires to specify an initial guess of the solution, the subspaces number, restarts, iterations 
and the tolerance for the relative residual. For all numerical tests in this study we set these 
numbers as subspaces = 200, restarts = 5, iterations = 300 and residual tolerance = 10­6. 
GMRES method often requires a good preconditioner which could effectively lower the 
condition number of the matrix and achieve convergence with reasonable computational effort. 
We use the incomplete lower­upper factorization (ILU) preconditioned version of the GMRES 
method. The preconditioner is generated from the Ifpack package. 
 
 
3. Results 
 
Strong scaling is widely used to check the ability of a numerical code to deliver results in less 
time when the amount of resources is increased. The parallel performance of the solvers is 
quantified by comparing the actual speedup with the ideal speedup for a given set of processors. 
The actual speedup and the ideal speedup are defined as 
 Actual speedup =        r < N 

 Ideal speedup =  
 
where 𝑡� is the computational time taken by r processors, and 𝑡� is the computational time taken 
by 𝑁 processors, with 𝑁 > 𝑟. Parallel efficiency is computed as the ratio of the actual speedup 
and the ideal speedup for a given number of processors: 
 Efficiency =  
 
An ideal scalable software should result in a linear speedup. However, this is hardly achieved in 
real situations. For a given mesh the parallel efficiency almost always decreases as we increase 
the number of processors. In this work, we consider a parallel efficiency is satisfactory if it is 
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greater than or equal to 0.6. In the following, we test the performance of GALES solvers. 
All tests are performed with 3D tetrahedral elements.  

3.1 Multi-component miscible flow 
 
As mentioned above, GALES was primarily developed to study geophysical problems. 
Specifically, to study the dynamics of underground multi­component magmas. As a matter of 
fact, most of the simulations carried out by GALES study magma dynamics in complex 
geometries. Therefore, this solver is the most frequently used one in GALES. To test the 
performance of the solver, we choose a typical two­magma mixing setup. A prolate ellipsoid 
domain with the longer axis set towards the x­axis is placed at 4 km depth. The lengths of the 
semi­axis in x, y, and z directions are 400, 100 and 100 respectively (see Figure 4). The lower 
half of the domain is filled with andesite magma, and the upper half is with dacite magma, each 
with its own properties deriving from their actual composition determined by ten major oxides 
plus the two major volatile species water and carbon dioxide. Although the andesitic melt is in 
general denser than the dacitic melt, the larger volatile content usually associated to deeper, 
gas rich magmas makes the two­phase gas­melt andesitic mixture lighter than the dacitic one. 
Initial and boundary conditions are set as in [Garg et al., 2019]. 
The simulation is run on 5 different meshes with progressively increasing size. The mesh models 
are listed in Table 1. For a two­fluid case, there are 6 unknowns per node: pressure, three 
components of velocity, temperature and mass fraction of one component. We run the test 
cases for 10 time iterations with a fixed time step of 0.01 s. At each time step, 3 non­linear 
iterations are performed. 

13

Figure 4 Setup for andesite­dacite magma mixing. 

Table 1 Mesh models for andesite­dacite mixing.

Test #nodes #elements #dofs

1 48478 266661 290868

2 175001 1004750 1050006

3 1951658 11782329 11709948

4 3341888 20317220 20051328

5 7802061 47581941 46812366
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Figure 5 Andesite­dacite mixing results for mesh 3: segregated layers of magmas displayed as contours 
of mass fraction at time 𝑡 = 785 s. 

Figure 6 Andesite­dacite mixing: 
scaling results for mesh #1. 

Figure 7 Andesite­dacite mixing: 
scaling results for mesh #2.

Figure 8 Andesite­dacite mixing: 
scaling results for mesh #3.
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Figure 5 displays the contours of mass fraction for five different values at 𝑡 = 785 s when a steady 
state is reached. We do not discuss the detailed results on the magma mixing here; instead, we 
present the parallel performance of the solver. Figures 6­10 show the strong scaling results for 
each test case. The left panel in the figures displays the time taken by the assembly procedure, 
the linear solver and the total time. We report here the average time taken for a non­linear 
iteration over 10 time steps with a variance of 0.056. We do not cover the initialization phase of 
the simulation in the analysis as it involves reading the mesh and constructing several class 
objects to be used for subsequent times. The right panel in the figures plots the speedup and 
the efficiency as a function of number of cores.  
For increasing mesh size (Figures 6­10), we get a good scaling efficiency up to 3072 number of 
processors. For the mesh #1 (Figure 6), we can deduce that the code scales well up to 384 cores 
giving a parallel efficiency of 0.73. For more than 384 cores the efficiency starts decreasing. 
A similar conclusion can be drawn for other mesh models. For case #5 (Figure 10), the code scales 
very well up to 6144 cores with parallel efficiency of 0.63.  
Parallel performance primarily depends on load balancing and inter­processor communication. 
Our linear solvers are distributed and use peer­to­peer communication to solve the system. Table 
2 and Table 3 display the partition statistics for meshes #1 and #5, respectively, for different 
number of processors. Specifically, we display the average number of elements on a processor 
and the average percentage of inter­processor boundary nodes. These results are computed from 
the load balanced partitions generated by the Metis software. A load balanced partition reduces 
the overall execution time when we increase the resources. However, by increasing the number 
of processors, the percentage of boundary nodes lying at inter­processor boundaries also goes 
up, which means that the processors need to communicate more data. This substantially increases 
the communication time and results in a reduction of the parallel efficiency.  

15

Figure 9 Andesite­dacite mixing: 
scaling results for mesh #4.

Figure 10 Andesite­dacite mixing: 
scaling results for mesh #5.



Note that in case #1 for 768 cores, the average number of elements on a core becomes less 
than the total number of cores employed. Likewise, in case #5 for 12288 cores, there are 3872 
elements per core. This is not an ideal situation for a parallel setting and therefore expected to 
degrade the performance. However, up to 6144 cores, the efficiency stays good.
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Figure 11 Flow past a fixed cylinder at Re 100: 
the problem set up.

Table 3 Partitioning statistics for mesh #5 for andesite­dacite mixing: the second column displays the average 
number of elements on a core. The third column lists the average percentage of the number of nodes lying on 

inter­processor boundaries.

Table 2 Partitioning statistics for mesh #1 for andesite­dacite mixing: the second column displays the average 
number of elements on a core. The third column lists the average percentage of the number of nodes lying on 

inter­processor boundaries.

#cores #elements boundary nodes (in %) scaling efficiency computational time Tr (s)

384 123911 19 1.0 104.4 

768 61955 23 1.0 51.8

1536 30977 30 0.91 27.9

3072 15488 35 0.80 16.4

6144 7744 42 0.63 10.3

12288 3872 50 0.53 6.2

#cores #elements boundary nodes (in %) scaling efficiency computational time Tr (s)

48 5555 37 1.0 3.5

96 2777 46 0.92 1.9

192 1389 56 0.88 1.0

384 694 65 0.73 0.6

768 347 75 0.55 0.4
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3.2 Incompressible flow 
 
For incompressible flow, we perform a scaling test on the flow past a fixed cylinder at Re = 100. 
The test case is one of the most common standard benchmarks for code validation in 
incompressible flow. The computational mesh is composed of 892108 nodes and 5339591 
tetrahedral elements, giving rise to a total of 4460540 DOFs. Figure 11 displays the schematic 
sketch of the problem and Figure 12 the scaling results in terms of execution time and speedup. 
The results are averaged over 10 time steps and 3 non­linear iterations per time step. 

We notice that for this problem the solver scales well up to 1536 cores for this mesh size. Again, 
in this case, one can see the performance degrades mainly when the average number of elements 
per core becomes smaller than the number of processors. A second factor that contributes to 
the lower performance is the increase in inter­processor boundary nodes (see Table 4).  

3.3 Compressible flow 
 
For compressible flow, we chose the test case of Mach 3 flow over a flat plate. The flow features 
result in a shock and a boundary layer. The computational mesh is composed of 664983 nodes 
and 3964360 tetrahedral elements. The total number of unknowns to be solved is 3324915. 
Figure 13 displays the problem setup. The scaling results are presented in Figure 14. The results 
are averaged over 10 time steps and 5 non­linear iterations per time step. 

17

Figure 12 Flow past a fixed cylinder 
at Re 100: the scaling results.

Table 4 Partitioning statistics for flow past a fixed cylinder at Re 100: the second column displays the average 
number of elements on a core. The third column lists the average percentage of the number of nodes lying on 
inter­processor boundaries.

#cores #elements boundary nodes (in %) scaling efficiency computational time Tr (s)

192 27810 27 1.0 33.6

384 13905 34 0.95 17.8

768 6952 42 0.87 9.7

1536 3476 50 0.74 5.6

3072 1738 59 0.58 3.7



For this case we get a good scaling efficiency of up to 3072 cores even if the average number of 
elements per core goes as low as 1290 and the percentage of boundary nodes increases to 62% 
(see Table 5). For 6144 cores, the scaling efficiency decreases to 0.43. 

3.4 Elastostatics 
 
For the elastostatic solver we perform the scaling test on a Mogi model problem. The Mogi 
model is often used to compute the surface deformation at active volcanoes as well as to invert 
the measured surface deformation and retrieve lumped parameters characterizing the source, 
such as the change in volume or change in pressure. The simulation domain consists of a cube 
with side length 100 km.  
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Figure 13 Flat plate at Mach 3: the problem set up.

Figure 14 Flat plate at Mach 3: 
the scaling results.

Table 5 Partitioning statistics for flat plate at Mach 3: the second column displays the average number of 
elements on a core. The third column lists the average percentage of the number of nodes lying on  

inter­processor boundaries.

#cores #elements boundary nodes (in %) scaling efficiency Computational time Tr (s)

192 20648 30 1.0 15.1 

384 10323 37 0.98 8.2

768 5161 45 0.84 4.5

1536 2580 53 0.75 2.5

3072 1290 62 0.63 1.5

6144 645 71 0.43 1.1
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A magma chamber of radius 1 km is placed at 4 km depth which acts as a source pushing outwards 
with a force deriving from an applied 20 MPa overpressure (see Figure 15). Table 6 lists the three 
different meshes used to run this case. The scaling results are presented in Figures 16­18. 

We notice that for all test runs the time taken by the GMRES solver is always more than the time 
taken to assemble the linear system. This is different from the case of the fluid solvers where 
GMRES was efficient to solve the problems and took less time in delivering results. This suggests 
that GMRES solver with ILU preconditioner is not an optimal choice for elastostatic problems. 
Since the finite element discretization of elastostatics equations results in symmetric positive 
definite system, the conjugate gradient method with Incomplete Cholesky Factorization will be 
a good candidate to be tested for this solver. In our current analysis we have not yet tested the 
conjugate gradient method and we plan to do that in our future work.  
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Figure 15 Problem setup for Mogi model.

Table 6 Mesh models for Mogi test.

Figure 16 Mogi model: scaling 
results for mesh #1.

Test #nodes #elements #dofs

1 225802 1129778 677406

2 4033243 20649633 12099729

3 8406255 43121526 25218765



Table 7 displays the mesh statistics for mesh model #2. In general, we notice that the 
performance is lower in comparison to the fluid cases. With 3072 cores, the scaling efficiency 
already decreases even though the number of elements per processor is relatively high and the 
number of inter­processor boundary nodes is still reasonable. 
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Figure 17 Mogi model: scaling 
results for mesh #2.

Figure 18 Mogi model: scaling 
results for mesh #3. 

 

Table 7 Partitioning statistics for mesh #2 Mogi model: the second column displays the average number of 
elements on a core. The third column lists the average percentage of the number of nodes lying on 

inter­processor boundaries.

#cores #elements boundary nodes (in %) scaling efficiency Computational time Tr (s)

96 215100 6 1.0 137.2

192 107550 9 1.0 66.9

384 53775 13 0.94 36.3

768 26887 18 0.82 20.8

1536 13443 25 0.73 11.8

3072 6123 36 0.54 8.0
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3.5 Elastodynamics 
 
For the elastodynamics solver, we use the same setup of the Mogi model with mesh number 3. 
We run it for 5 time iterations with a time step of 0.001 s. The non­linear iterations per time 
step are fixed to 3. Figure 19 displays the scaling results, which are averaged over all iterations. 
The results are similar to the ones we obtained in the elastostatic case. 

3.6 Fluid-Solid interaction 
 
For fluid­solid interaction (FSI), we test the solver on two different problems. In the first problem, 
an elastic plate is placed in a channel. The fluid flow is incompressible at Re = 100. A schematic 
sketch of the setup and the scaling results are presented in Figures 20 and 21. The fluid mesh 
is made of 406813 nodes and 2364631 elements, and the solid mesh contains 51170 nodes 
and 239488 elements. The time reported in Figure 21 is the average time for one time iteration 
which includes multiple non­linear iterations of fluid and solid solvers done at the outer level. 
Furthermore, both fluid and solid solvers use multiple non­linear iterations at the inner level to 
achieve convergence. 
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Figure 19 Mogi model: scaling 
results of elastodynamics case.

Figure 20 Plate in channel: problem 
setup.

Figure 21 Plate in channel: scaling 
results.



Table 8 lists the mesh partitioning statistics in terms of both fluid and solid meshes. We see that 
for this case, the solver scales well up to 384 cores, giving a parallel efficiency of 0.86, which is 
considered good for an FSI solver. At 768 cores, the number of elements per core for the solid 
problem decreases to 312, which is even less than the total number of cores. Nevertheless, the 
efficiency of 0.67 is still good. This is because of the fluid solver, which still has a high number 
of elements per processor. Also, the above tests show that the fluid solvers are better in 
scalability than the solid solvers. The efficiency decreases to 0.51 when the number of elements 
per core for the fluid domain approaches the number of processors. 
The second test case has the same setup as in the Mogi model problem (Figure 15). The only 
difference is that now the chamber is filled with andesite and dacite magmas separated by an 
interface and interacting with the surrounding rocks. Table 9 lists the mesh configurations for 
two different cases. The scaling results are displayed in Figures 22­23.  
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Table 8 Partitioning statistics for plate in channel: the second and third columns displays the average number of 
elements on a core for fluid and solid domains, respectively.

#cores #elements (fluid) #elements (solid) scaling efficiency Computational time Tr (s)

192 12315 1248 1.0 316.2

384 6608 624 0.86 183.5

768 3304 312 0.67 117.3

1536 1652 156 0.51 77.4

Table 9 Mesh sizes of different run cases for magma­rock interaction.

Test #nodes (fluid) #elements (fluid) #nodes (solid) #elements (solid)

1 20571 110862 31805 156769

2 276778 1624750 177836 912171

Figure 22 Magma­rock interaction:  
scaling results for mesh #1.
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We notice that for mesh 1 with 192 cores, we get a parallel efficiency of 0.62. For this case, the 
satisfactory scaling limit (parallel efficiency ≥ 0.6) is 192. Similarly, for mesh 2, one can see that 
the scaling limit is 384 cores. 
The FSI test cases show a little lower performance than individual fluid and solid solvers. This is 
in general true for any segregated FSI solver. The reason for that is the extra communication of 
data. Besides the peer­to­peer communication between different processors for individual fluid 
and solid linear solvers the extra communication comes from the boundary conditions at fluid 
solid interface ensuring coupling at each iteration step. 
Within a time step, an FSI problem requires multiple non­linear iterations between fluid and 
solid solvers. At each non­linear iteration, the forces and the kinematic variables need to be at 
equilibrium at the fluid­solid interface. The coupling is achieved by imposing Dirichlet and 
Neumann boundary conditions at the fluid­solid interface. After solving the fluid problem, the 
forces are computed and applied at the fluid­solid interface to the solid problem. Similarly, after 
solving the solid problem, the velocities and deformation need to be transferred to the fluid and 
moving mesh problems, respectively. In the parallel environment, often the fluid and solid nodes 
that share the interface reside on different processors. Since coupling must be guaranteed at 
each non­linear iteration of a time step, the segregated solver inherently involves this extra 
communication cost. Such an additional communication cost is unavoidable and usually causes 
the lower performance of the code. A circumvent to this problem is to use a monolithic solver 
in which fluid and solid problems are solved simultaneously. This is currently under consideration 
for further developments.  
 
 
Conclusions 
 
In this report we present the results pertaining to strong scaling of the GALES code. After a 
description of the parallel implementation of the code, we test the performance of the fluid, 
the solid, and the FSI solvers for different problem configurations and mesh size. We 
demonstrate that GALES successfully solves problems containing several million 3D elements. 
We remark that in this study we test cases up to approximately 50 million unknowns. However, 
the code can be effectively used for even larger problems (up to 2 billion unknowns). A good 
speedup is observed for the fluid solvers, for which the performance mainly decreased when 
the number of elements on a core becomes less than the number of employed processors. We 
also show that an increase in the number of inter­processor boundary nodes negatively impacts 
the strong scaling performance. We notice that in case of solid problems, the GMRES solver 
with ILU preconditioner takes a much longer time than the assembly time. That results in a total 
longer time to solve the problems. Potential solutions will be explored in our future work. Finally, 
we test the performance of the FSI solver, which turns out to be lower than that for the fluid 
and solid solvers alone. Also in this case, we are identifying solutions and believe there is room 
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Figure 23 Magma­rock interaction: 
scaling results for mesh #2.



for substantial improvements in code performance. Additional work is underway to study the 
bottlenecks in the code and analyze the parallel performance through advanced tools such as 
Extrae, PAPI and Paraver. 
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